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Introduction

= Canonical Correlation Analysis (CCA) is a dimension
reduction method that is similar to PCA, but where we
simultaneously reduce the dimension of two random
vectors Y and X.
» Instead of trying to explain overall variance, we try to
explain the covariance Cov(Y, X).
= Note that this is a measure of association between Y
and X.
» Examples include:
= Arithmetic speed and power (Y) and reading speed and
power (X)
= College performance metrics (Y) and high-school
achievement metrics (X)



Population model i

Let Y and X be p- and ¢-dimensional random vectors,

respectively.
= We will assume that p < ¢.

» Let uy and px be the mean of Y and X, respectively.
= Let ¥y and X x be the covariance matrix of Y and X,
respectively, and let Xy x = X% be the covariance

matrix Cov(Y, X).
= Assume Xy and X x are positive definite.
» Note that Xy x has pq entries, corresponding to all

covariances between a component of Y and a component
of X.



Population model ii

» Goal of CCA: Summarise Xy x with p numbers.

= These p numbers will be called the canonical
correlations.



Dimension reduction i

» Let U =0a"Y and V = b"Y be linear combinations of Y
and X, respectively.
= We have:
» Var(U) = a’Zya
= Var(V) =b"Sxb
= Cov(U,V) = a’ Sy xb.
» Therefore, we can write the correlation between U and V'
as follows:

aszxb
Corr(U, V) = NN




Dimension reduction ii

= We are looking for vectors a € R”, b € RY such that
Corr(U, V) is maximised.



= The first pair of canonical variates is the pair of linear
combinations Uy, V4 with unit variance such that
Corr(Uy, Vi) is maximised.

» The k-th pair of canonical variates is the pair of linear
combinations Uy, V. with unit variance such that
Corr(Ug, Vi) is maximised among all pairs that are
uncorrelated with the previous k£ — 1 pairs.

» When Uy, V} is the k-th pair of canonical variates, we say
that py = Corr(Uy, Vy) is the k-th canonical correlation.



Derivation of canonical variates i

= Make a change of variables:
1/2

" a=Xya
= b=x%

= We can then rewrite the correlation:

aTnyb
\/aTEya\/bTZXb
I nl W sk

 aTaViTh

Corr(U,V) =




Derivation of canonical variates ii

s Let M = 3,28y v 2572 We have

max Corr(a’Y,b'Y) <=  max  al Mb
ab a,b:]|al|=1,||b||=1
= The solution to this maximisation problem involves the
singular value decomposition of M.

= Equivalently, it involves the eigendecomposition of
MMT, where

MMT = 3725y xS Sy 5572,



CCA: Main theorem i

= Let \; > --- > A, be the eigenvalues of
~1/2 -1 ~1/2
» Leteq,...,e, be the corresponding eigenvector with
unit norm.
= Note that \; > --- > ), are also the p largest
eigenvalues of

MTM = 528y S5 Sy x B2

= Let fi,..., f, be the corresponding eigenvectors with

unit norm.
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CCA: Main theorem ii

= Then the k-th pair of canonical variates is given by
Up = eI 57'%Y, = R
= Moreover, we have

pr = Corr(Uy, Vi) = \/)\:
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Some vocabulary

1. Canonical directions: (e/'S;"%, fIS %)
2. Canonical variates: (U, V},) = (e;{Z;l/QY, fk.TZ;(l/QX>
3. Canonical correlations: p, = /)
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Sigma Y <- matrix(c(1l, 0.4, 0.4, 1), ncol = 2)
Sigma_X <- matrix(c(1l, 0.2, 0.2, 1), ncol 2)
Sigma YX <- matrix(c(0.5, 0.3, 0.6, 0.4), ncol = 2)
Sigma XY <- t(Sigma_YX)

rbind(cbind(Sigma_Y, Sigma_YX),
cbind(Sigma_XY, Sigma_X))
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#i#t (,11 [,2] [,3] [,4]
# [1,] 1.0 0.4 0.5 0.6
## [2,] 0.4 1.0 0.3 0.4
## [3,] 0.5 0.3 1.0 0.2
## [4,] 0.6 0.4 0.2 1.0
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library(expm)

sqrt_Y <- sqrtm(Sigma_Y)

sqrt_X <- sqrtm(Sigma_X)

M1 <- solve(sqrt_Y) %x*J Sigma_YX %* solve(Sigma_X)%x*J
Sigma_ XY %xJ, solve(sqrt_Y)

(decompl <- eigen(M1))
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## eigen() decomposition

## $values

## [1] 0.5457180317 0.0009089525
H##

## $vectors

## [,1] [,2]

## [1,] -0.8946536 0.4467605
## [2,] -0.4467605 -0.8946536

decompl$vectors[,1] %*’ solve(sqrt_Y)
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#it [,1] [,2]
## [1,] -0.8559647 -0.2777371

M2 <- solve(sqrt_X) %*’% Sigma XY %*/ solve(Sigma_Y)%x*J
Sigma_YX %*% solve(sqrt_X)

decomp2 <- eigen(M2)
decomp2$vectors[,1] %*’ solve(sqrt_X)

## [,1] [,2]
## [1,] 0.5448119 0.7366455
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sqrt (decompi$values)

## [1] 0.73872731 0.03014884
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Sample CCA

= let Yy,...,Y, and Xy,...,X,, be random samples, and
arrange them in n X p and n x ¢ matrices Y, X,
respectively.
= Note that both sample sizes are equal.
= Indeed, we assume that (Y;, X;) are sampled jointly,
i.e. on the same experimental unit.
= Let Y and X be the sample means.
= Let Sy and Sx be the sample covariances.
» Define

Syx = -3 (Y~ ¥) (X~ X)".

19



Sample CCA: Main theorem i

= Let 5\1 > > 5\p be the eigenvalues of
S B 7 ST
Y YXPOXx PXYRY c
= Let éq,...,¢é, be the corresponding eigenvector with

unit norm.
= Note that :\1 >0 > ;\p are also the p largest

eigenvalues of
2SS e 12

= Let fl, ceey fp be the corresponding eigenvectors with

unit norm.
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Sample CCA: Main theorem ii

= Then the k-th pair of sample canonical variates is given
by
U, =YSy e, Vi = XS f.

= Moreover, we have that p, = \/5% is the sample
correlation of Uk and Vk

21



Example (cont’'d) i

# Let's generate data

library(mvtnorm)

Sigma <- rbind(cbind(Sigma_Y, Sigma_YX),
cbind(Sigma XY, Sigma X))

YX <- rmvnorm(100, sigma = Sigma)
Y <- YX[,1:2]
X <- YX[,3:4]

decomp <- cancor(x = X, y = Y)
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Example (cont’d) ii

U <= Y %%} decomp$ycoef
V <= X %%’ decomp$xcoef

diag(cor (U, V))

## [1] 0.70084109 0.01977754

decomp$cor

## [1] 0.70084109 0.01977754
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library(tidyverse)
library(dslabs)

X <- olive %>%
select(-area, -region) %>%

as.matrix
Y <- olive %>%

select(region) %>%

model .matrix(~ region - 1, data = .)
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head (unname (Y))

## [,11 [,2]1 [,3]
## [1,] 0 0 1
# [2,] 0 0 1
## [3,] 0 0 1
## [4,] 0 0 1
## [5,] 0 0 1
## [6,] 0 0 1
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decomp <- cancor (X, Y)

V <= X %*% decomp$xcoef
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data.frame(

Vi = V[,1],

V2 = V[,2],

region = olive$region
) h>%

ggplot (aes(V1, V2, colour = region)) +
geom_point () +

theme_minimal ()
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Comments i

= The main difference between CCA and Multivariate Linear
Regression is that CCA treats Y and X symmetrically.
= As with PCA, you can use CCA and the covariance
matrix or the correlation matrix.
= The latter is equivalent to performing CCA on the
standardised variables.
= Note that sample CCA involves inverting the sample
covariance matrices Sy and Sx:
= This means we need to assume p,q < n.

= In general, this is what drives most of the performance
(or lack thereof) of CCA.
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Comments ii

= There may be gains in efficiency by directly estimating
the inverse covariance.
= When one of the two datasets Y or X represent indicators
variables for a categorical variables (cf. the olive dataset),
CCA is equivalent to Linear Discriminant Analysis.
= To learn more about this method, see a course/textbook
on Statistical Learning.
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Proportions of Explained Sample Variance i

» Just like in PCA, there is a notion of proportion of
explained variance that may be helpful in determining the
number of canonical variates to retain.

= Assume that Yy,...,Y, and Xy,...,X,, have been
standardized. The matrices A and B of canonical
directions have the following properties:

= The rows are the canonical directions (by definition!)

= The columns of the inverses A~!, B! are the sample
correlations between the canonical variates and the
standardized variables.
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Proportions of Explained Sample Variance ii

= Moreover, we have
= Corr(Y)=A"14a"T
» Corr(X)=B"'B 7T

= But recall that
= tr(Corr(Y)) =p
s tr (Corr(X)) = ¢
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Proportions of Explained Sample Variance iii

= Putting this all together, we have that

= Proportion of total standardized sample variance in

Y = (Yl Yp) explained by Ul, .. .,UT:
N 2
N i=1 25—y Corr (Ui, Yk)

RAY |Uy,...,U,) = ;

= Proportion of total standardized sample variance in
X= (X1 Xq> explained by Vi, ...,V

oy S0, Corr (Vi %)
q

RAX | Vh,....0) =
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# Olive data

X_sc <- scale(X)

Y_sc <- scale(Y)

decomp_sc <- cancor(X_sc, Y_sc)

V_sc <- X_sc %*J), decomp_sc$xcoef
colnames(V_sc) <- pasteO("CC", seq_len(ncol(V_sc)))

(prop_X <- rowMeans(cor(V_sc, X_sc)~2))
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## CC1 CC2 CC3 CC4 CC5 CC6 CC7  CC8
## 0.340 0.153 0.124 0.081 0.134 0.039 0.067 0.061

cumsum (prop_X)

## CCl1 CC2 CC3 CC4 CC5 CC6 CC7 CC8
## 0.34 0.49 0.62 0.70 0.83 0.87 0.94 1.00
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# But since we are dealing with correlations

# We get the same with unstandardized variables
decomp <- cancor (X, Y)

V <= X %*% decomp$xcoef

colnames (V) <- paste0("CC", seq_len(ncol(V)))

(prop_X <- rowMeans(cor(V, X)~2))

## CC1 CC2 CC3 CC4 CC5 CC6 CC7 CC8
## 0.340 0.153 0.124 0.081 0.134 0.039 0.067 0.061
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cumsum (prop_X)

## CCl1 CC2 CC3 CC4 CC5 CC6 CC7 CC8
## 0.34 0.49 0.62 0.70 0.83 0.87 0.94 1.00
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Interpreting the population canonical variates i

» To help interpretating the canonical variates, let's go
back to the population model.
= Define

i
A= (6{2;1/2 6;2;1/2) ,

— _ T
B= (M2 - )

= In other words, both A and B are p x p, and their rows
are the canonical directions.
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Interpreting the population canonical variates ii

= Using this notation, we can get all canonical variates

using one linear transformation:
U = AY, Y = BX.
= We then have
Cov(U,Y) = Cov(AY,Y) = AXy.
= Since Cov(U) = I,,, we have
Corr(Uy, Y;) = Cov(Uy, 07 'Y5),

where o7 is the variance of Y;.
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Interpreting the population canonical variates iii

» If we let Dy be the diagonal matrix whose i-th diagonal
element is o; = y/Var(Y;), we can write

Corr(U,Y) = AXy Dy

» Using similar computations, we get

Corr(U,Y) = AXy Dy, Corr(V,Y) = BYxy Dyt
Corr(U,X) = AXy x Dy, Corr(V,X) = BExDy'.
» These quantities (and their sample counterparts) give

us information about the contribution of the
original variables to the canonical variates.

40



# Let's go back to the olive data
decomp <- cancor (X, Y)

V <= X %7 decomp$xcoef

colnames (V) <- pasteO("CC", seq_len(8))

library(lattice)

levelplot(cor(X, V[,1:2]),
at = seq(-1, 1, by = 0.1),
xlab = "", ylab = "")
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levelplot(cor(Y, V[,1:2]1),
at = seq(-1, 1, by = 0.1),
xlab = ||||, ylab = nn)

43



ccz o

cc1 o

T
regionNorthern taly

T
regionSardinia

T
regionSouthern ltaly

- -05

L -1.0

44



Generalization of Correlation coefficients i

= The canonical correlations can be seen as a generalization
of many notions of “correlation”.
» |f both Y, X are one dimensional, then

Corr(a’Y,b"X) = Corr(Y,X), for all a,b.

» In other words, the canonical correlation generalizes the
univariate correlation coefficient.

= Then assume Y is one-dimensional, but X is
g-dimensional. Then CCA is equivalent to (univariate)
linear regression, and the first canonical correlation is
equal to the multiple correlation coefficient.
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Generalization of Correlation coefficients i

= Now, let's go back to full-generality: Y = (Y7,...,Y,),
X = (Xi,...,X,). Let a be all zero except for a one in
position 7, and let b be all zero except for a one in
position j. We have

|Corr(Y;, X;)| = |Corr(a”Y,b"X))|
< max Corr(a’ Y, b X)

a,b

= p1.
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Generalization of Correlation coefficients

» In other words, the first canonical correlation is larger
than any entry (in absolute value) in the matrix
Corr (Y, X).
= Finally, the k-th canonical correlation p; can be
interpreted as the multiple correlation coefficient of
two different univariate linear regression model:
= U against X
= V} against Y.
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Example (cont’'d) i

# Canonical correlations

decomp$cor

## [1] 0.95 0.84

# Maximum value in correlation matriz
max (abs (cor(Y, X)))

## [1] 0.89
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Example (cont’d) ii

# Multiple correlation coefficients

sqrt (summary (Im(V[,1] ~ Y))$r.squared)

## [1] 0.95

sqrt (summary (Im(V[,2] ~ Y))$r.squared)

## [1] 0.84
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Geometric interpretation i

» Let's look at a geometric interpretation of CCA.
= First, some notation:
= Let A be the matrix whose k-th row is the k-th
canonical direction 6{2;1/2.
= Let E be the matrix whose k-th column is the
eigenvector e;. Note that ETE = I,

= We thus have A = ET%, "%,

» We get all canonical variates Uy, by transforming Y using
A:
U= AY.
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Geometric interpretation ii

= Now, using the spectral decomposition of >y, we can

write
A= ETS;Y? = ETP A2 PE,

where Py contains the eigenvectors of >y and Ay is the
diagonal matrix with its eigenvalues.
= Therefore, we can see that

U = AY = ETP, A2 PLY.
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Geometric interpretation

» Let's look at this expression in stages:

" PEY: This is the matrix of principal components of
Y.
Ay 1/2 (PgY) We standardize the principal
components to have unit variance.

= Py (A 1/2P Y): We rotate the standardized PCs
using a transformation that only involves Xy

« BT (PYA;,UQP}ZY): We rotate the result using a
transformation that involves the whole covariance

matrix .
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» Let's go back to the covariance matrix at the beginning

of this slide deck:

1.0
0.4
0.5
0.6

0.4
1.0
0.3
0.4

0.5
0.3
1.0
0.2

0.6
0.4
0.2
1.0
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Large sample inference
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Test of independence i

= Recall what we said at the outset: CCA trys to explain
the covariance Cov(Y, X).
= |f there is no correlation between Y, X, then Xy x = 0.
= In particular, a” Sy xb = 0 for any choice of
a € RP,b € R?, and therefore all canonical correlations
are equal to 0.
» To test for independence between Y and X, we will use a
likelihood ratio test.
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LRT for EYX =01

Let (Y;,X;),i=1,...,n, be a random sample from a normal
distribution N, ,(p, %), with

Let Sy, Sx be the sample covariances of Y4,...,Y,,
respectively, and let .S,, be the p + ¢-dimensional sample
covariance of (Y;, X;).
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LRT for EYX =0 i

Then the likelihood ratio test for Hy : Xy x = 0 rejects Hy for
large values of

9100 A — 1Sy[lSx[) _ 2 2
—2log A = nlog R = —nlog [J(1 - p;),
n i=1

where py, ..., p, are the sample canonical correlations.
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Null distribution

1. For large n, the statistic —2log A is approximately
chi-square with degrees of freedom equal to

((p+q)(192+q+1)> B (p(p;” + q(q;1)> = pq.

2. Bartlett's correction uses a different statistic (but the
same null distribution):

—(n—l—§<p+q+1>)logﬁ<1—ﬁ?>.
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= We will look at a different example, this time from the
field of vegetation ecology.
= We have two datasets:
= varechem: 14 chemical measurements from the soil.
= varespec: 44 estimated cover values for lichen species.
» The data has 24 observations.
= For more details, see Vare, H., Ohtonen, R. and Oksanen,
J. (1995) Effects of reindeer grazing on understorey
vegetation in dry Pinus sylvestris forests. Journal of
Vegetation Science 6, 523-530.
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library(vegan)

data(varespec)

data(varechem)

# There are too many wvariables in varespec

# Let's pick first 10

Y <- varespec %>%
select(Callvulg:Diphcomp) %>%

as.matrix
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# The help page in “vegan suggests a better

# chemical model
X <- varechem %>Y%

model .matrix( ~ Al
data

+ P*(K + Baresoil) - 1,

a)

=Y)

decomp <- cancor(x = X, y

n <- nrow(X)
(LRT <- -n*log(prod(1 - decomp$cor~2)))
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## [1] 156

p <- min(ncol(X), ncol(Y))
q <- max(ncol(X), ncol(Y))
LRT > qchisq(0.95, df = pxq)

## [1] TRUE
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LRT bart <- -(n - 1 - 0.5%(p + q + 1)) *
log(prod(1 - decomp$cor~2))

c("Large Sample" = LRT,
"Bartlett" = LRT_bart)

## Large Sample Bartlett
## 156 94

LRT bart > qchisq(0.95, df = pxq)

## [1] TRUE
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Sequential inference i

= The LRT above was for independence, i.e. Yy x = 0.
= Given our description of CCA above, this test is equivalent
to having all canonical correlations being equal to 0.

EYX:0<:>p1:-~-:pp:0.

= If we reject the null hypothesis, it is natural to ask how
many canonical correlations are nonzero.

= Recall that by design p; > --- > p,. We thus get a
sequence of null hypotheses:

H(’f:,01#0,...,pk7é(),pk+l:...:pp:().
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Sequential inference ii

» We can test the k-th hypothesis using a truncated
version of the likelihood ratio test statistic:

1
LRTk:—<n—1—2(p+q+1)>log 1 (-2,

where its null distribution is approximately chi-square on
(p — k)(q — k) degrees of freedom.

70



Example (cont’'d) i

# We can get the truncated LRTs in one go
(log_ccs <- rev(log(cumprod(1l - rev(decomp$cor)~2))))

## [1] -6.513 -4.002 -2.259 -1.011 -0.262 -0.073

(LRTs <- -(n - 1 - 0.5%(p + q + 1)) * log_ccs)

## [1] 94.4 58.0 32.7 14.7 3.8 1.1
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Example (cont’d) ii

k_seq <- seq(0, p - 1)
LRTs > qchisq(0.95,
df = (p - k_seq)*(q - k_seq))

## [1] TRUE FALSE FALSE FALSE FALSE FALSE

# We only reject the first null hypothesis
# of independence
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- LRT

Critical value
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= CCA is a dimension reduction method like PCA
= But we are reducing the dimension of two datasets
jointly.
= Instead of maximising variance, we maximise
correlation.
= The goal is to explain the association between Y and X.
= Unlike MLR, both datasets are treated equally.
= All visualization methods we discussed in the context of
PCA (e.g. component plots, loading plots, biplots) are
available for CCA.
= See the R package vegan.
» Limitation: CCA performs poorly when p and/or ¢ are
close to n.
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