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Introduction

• Canonical Correlation Analysis (CCA) is a dimension
reduction method that is similar to PCA, but where we
simultaneously reduce the dimension of two random
vectors Y and X.

• Instead of trying to explain overall variance, we try to
explain the covariance Cov(Y, X).

• Note that this is a measure of association between Y
and X.

• Examples include:
• Arithmetic speed and power (Y) and reading speed and

power (X)
• College performance metrics (Y) and high-school

achievement metrics (X)
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Population model i

• Let Y and X be p- and q-dimensional random vectors,
respectively.

• We will assume that p ≤ q.
• Let µY and µX be the mean of Y and X, respectively.
• Let ΣY and ΣX be the covariance matrix of Y and X,

respectively, and let ΣY X = ΣT
XY be the covariance

matrix Cov(Y, X).
• Assume ΣY and ΣX are positive definite.

• Note that ΣY X has pq entries, corresponding to all
covariances between a component of Y and a component
of X.
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Population model ii

• Goal of CCA: Summarise ΣY X with p numbers.
• These p numbers will be called the canonical

correlations.
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Dimension reduction i

• Let U = aT Y and V = bT Y be linear combinations of Y
and X, respectively.

• We have:
• Var(U) = aT ΣY a

• Var(V ) = bT ΣXb

• Cov(U, V ) = aT ΣY Xb.
• Therefore, we can write the correlation between U and V

as follows:

Corr(U, V ) = aT ΣY Xb√
aT ΣY a

√
bT ΣXb

.
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Dimension reduction ii

• We are looking for vectors a ∈ Rp, b ∈ Rq such that
Corr(U, V ) is maximised.

6



Definitions

• The first pair of canonical variates is the pair of linear
combinations U1, V1 with unit variance such that
Corr(U1, V1) is maximised.

• The k-th pair of canonical variates is the pair of linear
combinations Uk, Vk with unit variance such that
Corr(Uk, Vk) is maximised among all pairs that are
uncorrelated with the previous k − 1 pairs.

• When Uk, Vk is the k-th pair of canonical variates, we say
that ρk = Corr(Uk, Vk) is the k-th canonical correlation.
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Derivation of canonical variates i

• Make a change of variables:
• ã = Σ1/2

Y a

• b̃ = Σ1/2
X b

• We can then rewrite the correlation:

Corr(U, V ) = aT ΣY Xb√
aT ΣY a

√
bT ΣXb

= ãT Σ−1/2
Y ΣY XΣ−1/2

X b̃
√

ãT ã
√

b̃T b̃
.
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Derivation of canonical variates ii

• Let M = Σ−1/2
Y ΣY XΣ−1/2

X . We have

max
a,b

Corr(aT Y, bT Y) ⇐⇒ max
ã,b̃:∥ã∥=1,∥b̃∥=1

ãT Mb̃

• The solution to this maximisation problem involves the
singular value decomposition of M .

• Equivalently, it involves the eigendecomposition of
MMT , where

MMT = Σ−1/2
Y ΣY XΣ−1

X ΣXY Σ−1/2
Y .
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CCA: Main theorem i

• Let λ1 ≥ · · · ≥ λp be the eigenvalues of
Σ−1/2

Y ΣY XΣ−1
X ΣXY Σ−1/2

Y .
• Let e1, . . . , ep be the corresponding eigenvector with

unit norm.
• Note that λ1 ≥ · · · ≥ λp are also the p largest

eigenvalues of

MT M = Σ−1/2
X ΣXY Σ−1

Y ΣY XΣ−1/2
X .

• Let f1, . . . , fp be the corresponding eigenvectors with
unit norm.
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CCA: Main theorem ii

• Then the k-th pair of canonical variates is given by

Uk = eT
k Σ−1/2

Y Y, Vk = fT
k Σ−1/2

X X.

• Moreover, we have

ρk = Corr(Uk, Vk) =
√

λk.
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Some vocabulary

1. Canonical directions: (eT
k Σ−1/2

Y , fT
k Σ−1/2

X )
2. Canonical variates: (Uk, Vk) =

(
eT

k Σ−1/2
Y Y, fT

k Σ−1/2
X X

)
3. Canonical correlations: ρk =

√
λk
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Example i

Sigma_Y <- matrix(c(1, 0.4, 0.4, 1), ncol = 2)
Sigma_X <- matrix(c(1, 0.2, 0.2, 1), ncol = 2)
Sigma_YX <- matrix(c(0.5, 0.3, 0.6, 0.4), ncol = 2)
Sigma_XY <- t(Sigma_YX)

rbind(cbind(Sigma_Y, Sigma_YX),
cbind(Sigma_XY, Sigma_X))
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Example ii

## [,1] [,2] [,3] [,4]
## [1,] 1.0 0.4 0.5 0.6
## [2,] 0.4 1.0 0.3 0.4
## [3,] 0.5 0.3 1.0 0.2
## [4,] 0.6 0.4 0.2 1.0
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Example iii

library(expm)
sqrt_Y <- sqrtm(Sigma_Y)
sqrt_X <- sqrtm(Sigma_X)
M1 <- solve(sqrt_Y) %*% Sigma_YX %*% solve(Sigma_X)%*%

Sigma_XY %*% solve(sqrt_Y)

(decomp1 <- eigen(M1))
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Example iv

## eigen() decomposition
## $values
## [1] 0.5457180317 0.0009089525
##
## $vectors
## [,1] [,2]
## [1,] -0.8946536 0.4467605
## [2,] -0.4467605 -0.8946536

decomp1$vectors[,1] %*% solve(sqrt_Y)
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Example v

## [,1] [,2]
## [1,] -0.8559647 -0.2777371

M2 <- solve(sqrt_X) %*% Sigma_XY %*% solve(Sigma_Y)%*%
Sigma_YX %*% solve(sqrt_X)

decomp2 <- eigen(M2)
decomp2$vectors[,1] %*% solve(sqrt_X)

## [,1] [,2]
## [1,] 0.5448119 0.7366455
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Example vi

sqrt(decomp1$values)

## [1] 0.73872731 0.03014884
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Sample CCA

• Let Y1, . . . , Yn and X1, . . . , Xn be random samples, and
arrange them in n × p and n × q matrices Y,X,
respectively.

• Note that both sample sizes are equal.
• Indeed, we assume that (Yi, Xi) are sampled jointly,

i.e. on the same experimental unit.
• Let Ȳ and X̄ be the sample means.
• Let SY and SX be the sample covariances.
• Define

SY X = 1
n − 1

n∑
i=1

(
Yi − Ȳ

) (
Xi − X̄

)T
.
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Sample CCA: Main theorem i

• Let λ̂1 ≥ · · · ≥ λ̂p be the eigenvalues of
S

−1/2
Y SY XS−1

X SXY S
−1/2
Y .

• Let ê1, . . . , êp be the corresponding eigenvector with
unit norm.

• Note that λ̂1 ≥ · · · ≥ λ̂p are also the p largest
eigenvalues of

S
−1/2
X SXY S−1

Y SY XS
−1/2
X .

• Let f̂1, . . . , f̂p be the corresponding eigenvectors with
unit norm.
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Sample CCA: Main theorem ii

• Then the k-th pair of sample canonical variates is given
by

Ûk = YS
−1/2
Y êk, V̂k = XS

−1/2
X f̂k.

• Moreover, we have that ρ̂k =
√

λ̂k is the sample
correlation of Ûk and V̂k.
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Example (cont’d) i

# Let's generate data
library(mvtnorm)
Sigma <- rbind(cbind(Sigma_Y, Sigma_YX),

cbind(Sigma_XY, Sigma_X))

YX <- rmvnorm(100, sigma = Sigma)
Y <- YX[,1:2]
X <- YX[,3:4]

decomp <- cancor(x = X, y = Y)
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Example (cont’d) ii

U <- Y %*% decomp$ycoef
V <- X %*% decomp$xcoef

diag(cor(U, V))

## [1] 0.70084109 0.01977754

decomp$cor

## [1] 0.70084109 0.01977754
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Example i

library(tidyverse)
library(dslabs)

X <- olive %>%
select(-area, -region) %>%
as.matrix

Y <- olive %>%
select(region) %>%
model.matrix(~ region - 1, data = .)
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Example ii

head(unname(Y))

## [,1] [,2] [,3]
## [1,] 0 0 1
## [2,] 0 0 1
## [3,] 0 0 1
## [4,] 0 0 1
## [5,] 0 0 1
## [6,] 0 0 1
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Example iii

decomp <- cancor(X, Y)

V <- X %*% decomp$xcoef
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Example iv

data.frame(
V1 = V[,1],
V2 = V[,2],
region = olive$region

) %>%
ggplot(aes(V1, V2, colour = region)) +
geom_point() +
theme_minimal()
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Example v
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Comments i

• The main difference between CCA and Multivariate Linear
Regression is that CCA treats Y and X symmetrically.

• As with PCA, you can use CCA and the covariance
matrix or the correlation matrix.

• The latter is equivalent to performing CCA on the
standardised variables.

• Note that sample CCA involves inverting the sample
covariance matrices SY and SX :

• This means we need to assume p, q < n.
• In general, this is what drives most of the performance

(or lack thereof) of CCA.
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Comments ii

• There may be gains in efficiency by directly estimating
the inverse covariance.

• When one of the two datasets Y or X represent indicators
variables for a categorical variables (cf. the olive dataset),
CCA is equivalent to Linear Discriminant Analysis.

• To learn more about this method, see a course/textbook
on Statistical Learning.
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Proportions of Explained Sample Variance i

• Just like in PCA, there is a notion of proportion of
explained variance that may be helpful in determining the
number of canonical variates to retain.

• Assume that Y1, . . . , Yn and X1, . . . , Xn have been
standardized. The matrices A and B of canonical
directions have the following properties:

• The rows are the canonical directions (by definition!)
• The columns of the inverses A−1, B−1 are the sample

correlations between the canonical variates and the
standardized variables.
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Proportions of Explained Sample Variance ii

• Moreover, we have
• Corr(Y) = A−1A−T

• Corr(X) = B−1B−T

• But recall that
• tr (Corr(Y)) = p

• tr (Corr(X)) = q
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Proportions of Explained Sample Variance iii

• Putting this all together, we have that
• Proportion of total standardized sample variance in

Y =
(
Y1 · · · Yp

)
explained by Û1, . . . , Ûr:

R2(Y | Û1, . . . , Ûr) =
∑r

i=1
∑p

j=1 Corr
(
Ûi,Yk

)2

p

• Proportion of total standardized sample variance in
X =

(
X1 · · · Xq

)
explained by V̂1, . . . , V̂r:

R2(X | V̂1, . . . , V̂r) =
∑r

i=1
∑q

j=1 Corr
(
V̂i,Xk

)2

q
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Example i

# Olive data
X_sc <- scale(X)
Y_sc <- scale(Y)
decomp_sc <- cancor(X_sc, Y_sc)

V_sc <- X_sc %*% decomp_sc$xcoef
colnames(V_sc) <- paste0("CC", seq_len(ncol(V_sc)))

(prop_X <- rowMeans(cor(V_sc, X_sc)^2))

34



Example ii

## CC1 CC2 CC3 CC4 CC5 CC6 CC7 CC8
## 0.340 0.153 0.124 0.081 0.134 0.039 0.067 0.061

cumsum(prop_X)

## CC1 CC2 CC3 CC4 CC5 CC6 CC7 CC8
## 0.34 0.49 0.62 0.70 0.83 0.87 0.94 1.00
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Example iii

# But since we are dealing with correlations
# We get the same with unstandardized variables
decomp <- cancor(X, Y)
V <- X %*% decomp$xcoef
colnames(V) <- paste0("CC", seq_len(ncol(V)))

(prop_X <- rowMeans(cor(V, X)^2))

## CC1 CC2 CC3 CC4 CC5 CC6 CC7 CC8
## 0.340 0.153 0.124 0.081 0.134 0.039 0.067 0.061
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Example iv

cumsum(prop_X)

## CC1 CC2 CC3 CC4 CC5 CC6 CC7 CC8
## 0.34 0.49 0.62 0.70 0.83 0.87 0.94 1.00
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Interpreting the population canonical variates i

• To help interpretating the canonical variates, let’s go
back to the population model.

• Define

A =
(
eT

1 Σ−1/2
Y · · · eT

p Σ−1/2
Y

)T
,

B =
(
fT

1 Σ−1/2
X · · · fT

p Σ−1/2
X

)T
.

• In other words, both A and B are p × p, and their rows
are the canonical directions.
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Interpreting the population canonical variates ii

• Using this notation, we can get all canonical variates
using one linear transformation:

U = AY, Y = BX.

• We then have

Cov(U, Y) = Cov(AY, Y) = AΣY .

• Since Cov(U) = Ip, we have

Corr(Uk, Yi) = Cov(Uk, σ−1
i Yi),

where σ2
i is the variance of Yi.
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Interpreting the population canonical variates iii
• If we let DY be the diagonal matrix whose i-th diagonal

element is σi =
√

Var(Yi), we can write

Corr(U, Y) = AΣY D−1
Y .

• Using similar computations, we get

Corr(U, Y) = AΣY D−1
Y , Corr(V, Y) = BΣXY D−1

Y ,

Corr(U, X) = AΣY XD−1
X , Corr(V, X) = BΣXD−1

X .

• These quantities (and their sample counterparts) give
us information about the contribution of the
original variables to the canonical variates.
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Example i

# Let's go back to the olive data
decomp <- cancor(X, Y)
V <- X %*% decomp$xcoef
colnames(V) <- paste0("CC", seq_len(8))

library(lattice)
levelplot(cor(X, V[,1:2]),

at = seq(-1, 1, by = 0.1),
xlab = "", ylab = "")

41



Example ii
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Example iii

levelplot(cor(Y, V[,1:2]),
at = seq(-1, 1, by = 0.1),
xlab = "", ylab = "")
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Example iv
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Generalization of Correlation coefficients i

• The canonical correlations can be seen as a generalization
of many notions of “correlation”.

• If both Y, X are one dimensional, then

Corr(aT Y, bT X) = Corr(Y, X), for all a, b.

• In other words, the canonical correlation generalizes the
univariate correlation coefficient.

• Then assume Y is one-dimensional, but X is
q-dimensional. Then CCA is equivalent to (univariate)
linear regression, and the first canonical correlation is
equal to the multiple correlation coefficient.
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Generalization of Correlation coefficients ii

• Now, let’s go back to full-generality: Y = (Y1, . . . , Yp),
X = (X1, . . . , Xq). Let a be all zero except for a one in
position i, and let b be all zero except for a one in
position j. We have

|Corr(Yi, Xj)| = |Corr(aT Y, bT X)|
≤ max

a,b
Corr(aT Y, bT X)

= ρ1.
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Generalization of Correlation coefficients iii

• In other words, the first canonical correlation is larger
than any entry (in absolute value) in the matrix
Corr(Y, X).

• Finally, the k-th canonical correlation ρk can be
interpreted as the multiple correlation coefficient of
two different univariate linear regression model:

• Uk against X;
• Vk against Y.
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Example (cont’d) i

# Canonical correlations
decomp$cor

## [1] 0.95 0.84

# Maximum value in correlation matrix
max(abs(cor(Y, X)))

## [1] 0.89
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Example (cont’d) ii

# Multiple correlation coefficients
sqrt(summary(lm(V[,1] ~ Y))$r.squared)

## [1] 0.95

sqrt(summary(lm(V[,2] ~ Y))$r.squared)

## [1] 0.84
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Geometric interpretation i

• Let’s look at a geometric interpretation of CCA.
• First, some notation:

• Let A be the matrix whose k-th row is the k-th
canonical direction eT

k Σ−1/2
Y .

• Let E be the matrix whose k-th column is the
eigenvector ek. Note that ET E = Ip.

• We thus have A = ET Σ−1/2
Y .

• We get all canonical variates Uk by transforming Y using
A:

U = AY.
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Geometric interpretation ii

• Now, using the spectral decomposition of ΣY , we can
write

A = ET Σ−1/2
Y = ET PY Λ−1/2

Y P T
Y ,

where PY contains the eigenvectors of ΣY and ΛY is the
diagonal matrix with its eigenvalues.

• Therefore, we can see that

U = AY = ET PY Λ−1/2
Y P T

Y Y.
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Geometric interpretation iii

• Let’s look at this expression in stages:
• P T

Y Y: This is the matrix of principal components of
Y.

• Λ−1/2
Y

(
P T

Y Y
)
: We standardize the principal

components to have unit variance.
• PY

(
Λ−1/2

Y P T
Y Y

)
: We rotate the standardized PCs

using a transformation that only involves ΣY .
• ET

(
PY Λ−1/2

Y P T
Y Y

)
: We rotate the result using a

transformation that involves the whole covariance
matrix Σ.
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Example i

• Let’s go back to the covariance matrix at the beginning
of this slide deck:

Σ =


1.0 0.4 0.5 0.6
0.4 1.0 0.3 0.4
0.5 0.3 1.0 0.2
0.6 0.4 0.2 1.0

 .
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Large sample inference

59



Test of independence i

• Recall what we said at the outset: CCA trys to explain
the covariance Cov(Y, X).

• If there is no correlation between Y, X, then ΣY X = 0.
• In particular, aT ΣY Xb = 0 for any choice of

a ∈ Rp, b ∈ Rq, and therefore all canonical correlations
are equal to 0.

• To test for independence between Y and X, we will use a
likelihood ratio test.

60



LRT for ΣY X = 0 i

Let (Yi, Xi), i = 1, . . . , n, be a random sample from a normal
distribution Np+q(µ, Σ), with

Σ =

 ΣY ΣY X

ΣXY ΣX

 .

Let SY , SX be the sample covariances of Y1, . . . , Yn,
respectively, and let Sn be the p + q-dimensional sample
covariance of (Yi, Xi).
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LRT for ΣY X = 0 ii

Then the likelihood ratio test for H0 : ΣY X = 0 rejects H0 for
large values of

−2 log Λ = n log
(

|SY ||SX |
|Sn|

)
= −n log

p∏
i=1

(1 − ρ̂2
i ),

where ρ̂1, . . . , ρ̂p are the sample canonical correlations.
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Null distribution

1. For large n, the statistic −2 log Λ is approximately
chi-square with degrees of freedom equal to(

(p + q)(p + q + 1)
2

)
−
(

p(p + 1)
2

+ q(q + 1)
2

)
= pq.

2. Bartlett’s correction uses a different statistic (but the
same null distribution):

−
(

n − 1 − 1
2

(p + q + 1)
)

log
p∏

i=1
(1 − ρ̂2

i ).
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Example i

• We will look at a different example, this time from the
field of vegetation ecology.

• We have two datasets:
• varechem: 14 chemical measurements from the soil.
• varespec: 44 estimated cover values for lichen species.

• The data has 24 observations.
• For more details, see Väre, H., Ohtonen, R. and Oksanen,

J. (1995) Effects of reindeer grazing on understorey
vegetation in dry Pinus sylvestris forests. Journal of
Vegetation Science 6, 523–530.
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Example ii

library(vegan)

data(varespec)
data(varechem)

# There are too many variables in varespec
# Let's pick first 10
Y <- varespec %>%
select(Callvulg:Diphcomp) %>%
as.matrix
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Example iii

# The help page in `vegan` suggests a better
# chemical model
X <- varechem %>%
model.matrix( ~ Al + P*(K + Baresoil) - 1,

data = .)

decomp <- cancor(x = X, y = Y)

n <- nrow(X)
(LRT <- -n*log(prod(1 - decomp$cor^2)))
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Example iv

## [1] 156

p <- min(ncol(X), ncol(Y))
q <- max(ncol(X), ncol(Y))
LRT > qchisq(0.95, df = p*q)

## [1] TRUE
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Example v

LRT_bart <- -(n - 1 - 0.5*(p + q + 1)) *
log(prod(1 - decomp$cor^2))

c("Large Sample" = LRT,
"Bartlett" = LRT_bart)

## Large Sample Bartlett
## 156 94

LRT_bart > qchisq(0.95, df = p*q)

## [1] TRUE
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Sequential inference i

• The LRT above was for independence, i.e. ΣY X = 0.
• Given our description of CCA above, this test is equivalent

to having all canonical correlations being equal to 0.

ΣY X = 0 ⇐⇒ ρ1 = · · · = ρp = 0.

• If we reject the null hypothesis, it is natural to ask how
many canonical correlations are nonzero.

• Recall that by design ρ1 ≥ · · · ≥ ρp. We thus get a
sequence of null hypotheses:

Hk
0 : ρ1 ̸= 0, . . . , ρk ̸= 0, ρk+1 = · · · = ρp = 0.
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Sequential inference ii

• We can test the k-th hypothesis using a truncated
version of the likelihood ratio test statistic:

LRTk = −
(

n − 1 − 1
2

(p + q + 1)
)

log
p∏

i=k+1
(1 − ρ̂2

i ),

where its null distribution is approximately chi-square on
(p − k)(q − k) degrees of freedom.
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Example (cont’d) i

# We can get the truncated LRTs in one go
(log_ccs <- rev(log(cumprod(1 - rev(decomp$cor)^2))))

## [1] -6.513 -4.002 -2.259 -1.011 -0.262 -0.073

(LRTs <- -(n - 1 - 0.5*(p + q + 1)) * log_ccs)

## [1] 94.4 58.0 32.7 14.7 3.8 1.1
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Example (cont’d) ii

k_seq <- seq(0, p - 1)
LRTs > qchisq(0.95,

df = (p - k_seq)*(q - k_seq))

## [1] TRUE FALSE FALSE FALSE FALSE FALSE

# We only reject the first null hypothesis
# of independence
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Example (cont’d) iii
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Summary

• CCA is a dimension reduction method like PCA
• But we are reducing the dimension of two datasets

jointly.
• Instead of maximising variance, we maximise

correlation.
• The goal is to explain the association between Y and X.

• Unlike MLR, both datasets are treated equally.
• All visualization methods we discussed in the context of

PCA (e.g. component plots, loading plots, biplots) are
available for CCA.

• See the R package vegan.
• Limitation: CCA performs poorly when p and/or q are

close to n.
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	Large sample inference

