Kernel Methods

Max Turgeon

STAT 4690—-Applied Multivariate Analysis

» Linearity has been an important assumption for most of
the multivariate methods we have discussed.
= Multivariate Linear Regression
= PCA, FA, CCA
= This assumption may be more realistic after a
transformation of the data.

= E.g. Log transformation
= Embedding in a higher dimensional space?

set.seed(1234)

n <- 100

Generate uniform data

Y <- cbind(runif(n, -1, 1),
runif(n, -1, 1))

Check 1if it falls inside ellipse

Sigma <- matrix(c(1, 0.5, 0.5, 1), ncol = 2)

dists <- sqrt(diag(Y %x*% solve(Sigma) %*%
t(Y)))

inside <- dists < 0.85

Plot points
colours <- c("red", "blue") [inside + 1]

plot(Y, col = colours)

o \
o
° o
° o o o
o
® o
o o
° o
o ® =
o
o
o
o
o
o o
o
@ oo
o
o
o 0® 09 |
o
°
® o
° 6 o o o o
e
@g o L
o
o o ©
o
o
oS ®
o
® o
o
o o
© o
o
o
o
o
o o
T T T T T
0T S0 00 S0- 0T-

1.0

0.5

0.0

-0.5

-1.0

Y[

Transform data

(X, Y) > (X2, Y2, sqrt(2)*X*Y)

Y transf <- cbind(Y[,1]1°2, Y[,2]"2,
sqrt (2)*Y[,11*Y[,2])

library(scatterplot3d)
scatterplot3d(Y_transf, color = colours,
xlab = "X-axis",
ylab = "Y-axis",

zlab = "Z-axis")

SIXe-A

o
a
@
&
©
S
<
® S
o
o
o S
)
o S
o
o
9 © o wo
o L3
o S
o © o
Coo0
o o 00 o
® o
® o
[} Qo
b ©
o 5
5 C o)
o 0o
- o
o
© o
oo o 3
S
o
o, oo
o wo
Q
O
° oo o
o S
o8 8o
o
Ho
NP O s
t t ? t t 8
ST 0T S0 00 §0- 0T- GT-

X-axis

Z-axis

0.0 05 1.0 15

-05

o
o
o
o o6
o
o
o
® ° ©
o
o
o o° o
o™ o o o o
Y °© 6 o 8
° o
*, °
800 &9
%5 8
o
0.0 02 0.4 06 08 10

X-axis

Y-axis

Linear regression
outcome <- ifelse(inside, 1, -1)

head (outcome)

[1] -1 1 1 -1 -1 1

modell <- 1m(outcome ~ Y)
predl <- sign(predict(modell))
table(outcome, predl) # 677

#i#t predl

outcome -1 1
-1 32 18
1 15 35

model2 <- 1lm(outcome ~ Y transf)
pred2 <- sign(predict(model2))
table(outcome, pred2) # 927

10

#i# pred2
outcome -1 1
#it -1 44 6

#it 1 248

11

Example x

No transformation With transformation
o o
< 7 °© oo o o © @ = 7 °© oo o o © @
o ° o ©° ® o o o
Q@ © o ®© © o
o o o o
o © o
o©° o o©° o ©
I I °
s 7o o o S 7o o o
o o o
o oo oo o 0o)
o o o
i) o o ,° % o o o ,°
q 5 8 o
-y > o o = > o o O
S o o ® > o o o ° [}
o ©® o ® o o o @ o o ° o
o
© o o ©® o
o o ® ® OO o o o o OO
0 o o 0 o o o
— o 5 — o
? o » T Jlo o o
o
00 g 000 0 o
o
[eJ9) o
) S ° °© Mis
i —
[T T T T [T T T T
-1.0 -05 0.0 0.5 1.0 -1.0 -05 0.0 0.5 1.0
Y[Y[l

12

= Overfitting is “the production of an analysis that
corresponds too closely or exactly to a particular set of
data, and may therefore fail to fit additional data or
predict future observations reliably” (OED)
= In other words, a model is overfitted if it explains the
training data very well, but does poorly on test data.
= In regression, this often happens when we have too many
covariates

= Too many parameters for the sample size

13

Overfitting

= When embedding our covariates into a higher dimensional
space, we are increasing the number of parameters.

= There is a danger of overfitting.

= One possible solution: Regularised (or penalised)
regression.

= We constrain the parameter space using a penalty
function.

14

Ridge regression i

» Let (V;,X;),i=1,...,n be a sample of outcome with

covariates.
= Univariate Linear Regression: Assume that we are

interested in the linear model
Y, =8"X; + €.
» The Least-Squares estimate of 3 is given by
Brs = (XTX)7IXY,
where

15

Ridge regression ii

X=(X; - X,),
Y = (Yi,...,Y,).

= If the matrix X”7X is almost singular, then the
least-squares estimate will be unstable.
= Solution: Add a small quantity along its diagonal.
» XIX — XTX + A
= Bias-Variance trade-off

16

Ridge regression iii

» The Ridge estimate of 3 is given by

Br=(XTX+ A)'XTY.

17

library(ElemStatLearn)
library(tidyverse)

data_train <- prostate %>’
filter(train == TRUE) %>%
dplyr::select(-train)

data_test <- prostate %>%
filter(train == FALSE) %>%
dplyr: :select(-train)

18

modell <- 1m(lpsa ~ .,
data = data_train)
predl <- predict(modell, data_test)

mean((data_test$lpsa - predl)~2)

[1] 0.521274

19

glmnet does lasso, elastic-net and
ridge regression
library(glmnet)
X_train <- model.matrix(lpsa ~ . - 1,
data = data_train)
model2 <- glmnet(X_train, data_train$lpsa,
alpha = 0, lambda = 0.7)

20

X_test <- model.matrix(lpsa ~ . - 1,
data = data_test)
pred2 <- predict(model2, X_test)

mean((data_test$lpsa - pred2)~2)

[1] 0.5060843

21

Dual problem i

= The Ridge estimate actually minimises a regularized
least-squares function:

RLS(B f:y BTX;)? +35T5.

l\')\»—t

» If we take the derivative with respect to (3, we get
a n

g RLs(B) =~ 2 (¥i~ BTX;)X; + AB.
i=1

= Setting it equal to 0 and rearranging, we get

ij BTX)X

>/\>—‘

22

Dual problem ii

= Define a; = £(Y; — 87X;). We then get
b= Z%Xi = X"a,
i=1
where a = (aq, ..., a,).

= Why? We can now rewrite RLS(/3) as a function of a.
First note that

RLS(8) = (Y ~ XB)7(Y — X6) + 5675,

23

Dual problem iii

= Now we can substitute 3 = X a:

RLS(a) = ;(Y — XXTa)T(Y - XXTa) + ;\(XTQ)T(XTQ)
1

= 5(Y - XX) (Y — (XX1)a) + ;\aT(XXT)oz.

= This formulation of regularised least squares in terms of «
is called the dual problem.

= Key observation: RLS(«) depends on X; only through
the Gram matrix XX7.

= If we all we know are the dot products of the covariates
X, we can still solve the ridge regression problem.

24

Kernel ridge regression i

= Suppose we have a transformation ® : R? — R”", where
N is typically larger than p and can even be infinity.

» Let K be the n x n matrix whose (i, j)-th entry is the
dot product between ®(X;) and ®(X;):

K = o(X;)"®(X;).

» Important observation: This actually induces a map on
pairs of points in R?:

(X, X;) = ©(X;)T0(X).

= We will call the function k& the kernel function.

25

Kernel ridge regression ii

= Now, we can use the dual formulation of ridge regression
to fit a linear model between Y; and the transformed
d(X;):
Y = Te(X;) + e
= By setting the derivative of RLS(«) equal to zero and
solving for «, we see that

a=(K+\,)'Y.

26

Kernel ridge regression iii

= Note that we would need to know all the images ®(X;)
to recover ﬁ from &. On the other hand, we don't
actually need B to obtain the fitted values:

Y = 3(X)4 = (X)(X) & = Ka.

» To obtain the predicted value for a new covariate profile
X, first compute all the dot products in the feature space:

k = (k(X1,X), ..., k(X,,X)).

27

Kernel ridge regression iv

» We can then obtain the predicted value:

28

Example (cont’'d) i

Let's start with the tdentity map for Pht
We should get the same results as Ridge regression
X_train <- model.matrix(lpsa ~ .,

data = data_train)

Y _train <- data_train$lpsa

29

Example (cont’d) ii

Ridge regression
beta_hat <- solve(crossprod(X_train) +
0.7+diag(ncol(X_train))) %*%
t(X_train) %*’% Y train

beta_hat[1:3]

[1] 0.1323063 0.5709660 0.6160020

30

Example (cont’d) iii

Dual problem
alpha _hat <- solve(tcrossprod(X_train) +
0.7xdiag(nrow(X_train))) %*%

Y train
(t(X_train) %#*% alpha_hat) [1:3]

[1] 0.1323063 0.5709660 0.6160020

all.equal(beta_hat, t(X_train) %*’ alpha_hat)

[1] TRUE

31

Important observation

= We assumed that we had an embedding of the data into
a higher dimensional space.

» But our derivation only required the dot products of our
observations in the feature space.

= Therefore, we don't need to explicitly define the
transformation.

= All we need is to define a kernel function.

32

= We need a way to test whether a function k(X;,X;) is a
valid kernel, i.e. that it arises from a dot product in some
higher dimensional space.

» Theorem: A necessary and sufficient condition for (-, -)
to be a valid kernel is that the Gram matrix K, whose
(i,7)-th element is k(X;, X,), is positive semidefinite for
all choices of subsets {Xy,...,X,} from the sample
space.

= In particular, k(-,-) needs to be symmetric.

33

Examples of valid kernels

1. Polynomial kernel: k(X;,X;) = (XI'X; + ¢)?, for a
non-negative real number ¢ and d is a positive integer.

2. Sigmoidal kernel: k(X;, X;) = tanh(aX!X; —b), for
a,b > 0 real numbers.

3. Gaussian kernel: k(X;,X;) = exp (—||X; — X;||?/20?),
where o2 > 0.

In general, kernel functions measure similarity between the

inputs.

And note that the inputs need not be elements of R”: you can
define kernel functions on strings (for NLP) and graphs (for

network analysis).

34

Combining kernels i

A powerful of creating new kernels is by combining old ones:
let k1, ko be kernels, ¢ a constant, A a positive semidefinite
matrix, and f a real-valued function. Then the following are
also valid kernels:

1. k(X X)) = cki (X, X))

2. (X, X;) = f(X)k (X5, X;) f(X;)
3. k(X;, X;) = exp(k1(X;, X))

4. k(X;, X;) = ki(Xs, X5) + k2(X;, X))
5. k(X;,X,) = ki(Xy, X)) ka(X, X5)

6. k(X;,X,) = X;AX;;

35

Choosing a kernel function

» With so many choices, how can we choose the right
kernel?
= One approach is to use a kernel that measures similarity
in a manner relevant to your problem:
= For polynomial kernels with ¢ = 0, they are invariant to
orthogonal transformations of the feature space.
» There are also ways of combining the results from
different kernels:
= Prediction: Ensemble methods
= Inference: Omnibus tests

36

Example (cont’'d) i

library(kernlab)

##
Attaching package: 'kernlab'

The following object is masked from 'package:purrr'

#Hit

cross

37

Example (cont’d) ii

The following object is masked from 'package:ggplot:
##
#H# alpha

Let's use the quadratic kernel

poly <- polydot(degree = 2)

Kmat <- kernelMatrix(poly, X _train)
Kmat[1:3, 1:3]

38

Example (cont’d) iii

#i# 1 2 3
1 6501734 8712023 14104480
2 8712023 11681713 18916284
3 14104480 18916284 35263969

alpha_poly <- solve(Kmat + 0.7*diag(nrow(X_train))) %=

Y train

39

Example (cont’d) iv

Let's predict the test data
X_test <- model.matrix(lpsa ~ .,

data = data_test)
k_pred <- kernelMatrix(poly, X_train, X_test)

pred_poly <- drop(t(alpha_poly) %+’ k_pred)
mean((data_test$lpsa - pred_poly)~2)

[1] 1.007974

40

Example (cont’d) v

Compare with linear kernel
pred_lin <- drop(t(alpha_hat) %*%
tcrossprod(X_train, X test))

mean ((data_test$lpsa - pred_lin)~2)

[1] 0.5180924

41

Example (cont’d) vi

Now let's try a Gaussian kernel
Note: Look at documentation for
parametrisation

rbf <- rbfdot(sigma = 0.05)

Kmat <- kernelMatrix(rbf, X train)

alpha_rbf <- solve(Kmat + 0.7*diag(nrow(X_train))) %

Y train

42

Example (cont’d) vii

k_pred <- kernelMatrix(rbf, X_train, X _test)

pred_rbf <- drop(t(alpha_rbf) %*J) k_pred)
mean ((data_test$lpsa - pred_rbf)~2)

[1] 3.530104

43

Example (cont’d) viii

Can we do better by choosing a different sigma?

n <- nrow(X_train)

fit_rbf <- function(sigma) {
rbf <- rbfdot(sigma = sigma)
Kmat <- kernelMatrix(rbf, X train)
alpha_rbf <- solve(Kmat + 0.7xdiag(n)) %*%
Y train
return(list(alpha = alpha_rbf,
rbf = rbf))

44

Example (cont’d) ix

pred_rbf <- function(fit) {
k_pred <- kernelMatrix(fit$rbf, X_train,
X _test)
pred_rbf <- drop(t(fit$alpha) %*J% k_pred)
return(pred_rbf)
}

45

Example (cont’d) x

sigma_vect <- 107seq(0, -2, by = -0.1)
MSE <- sapply(sigma_vect,
function (sigma) {
fit_rbf <- fit_rbf(sigma)
pred_rbf <- pred_rbf(fit_rbf)
mean ((data_test$lpsa - pred_rbf)~2)
b

46

Example (cont’d) xi

data.frame(
sigma = sigma_vect,
MSE = MSE

) ©>h
ggplot (aes(sigma, MSE)) +
geom_line() +
theme_minimal () +

scale_x_logl10()

47

Example (cont’d) xii

MSE

0.01 0.10 1.00
sigma

48

Example (cont’d) xiii

data.frame (
sigma = sigma_vect,
MSE = MSE
) %>h
filter (MSE == min(MSE))

sigma MSE
1 0.01 1.543654

49

Cross-validation i

= In the example above, we saw that we can tune (or
select) the parameter sigma by fitting various models and
computing the resulting MSE on the test data.

= Note that this is the most accurate way to estimate the
generalization capabilities of your model.

» In practice, if you don't have enough data to set aside a
testing dataset, you can use cross-validation to derive a
similar estimate.

50

Cross-validation ii

Algorithm
Let K > 1 be a positive integer.

1. Separate your data into K subsets of (approximately)
equal size.

2. For k=1,..., K, put aside the k-th subset and use the
remaining ' — 1 subsets to train your algorithm.

3. Using the trained algorithm, predict the values for the
held out data.

4. Calculate M SFE}, as the Mean Squared-Error for these
predictions.

5. The overall MSE estimate is given by

1
MSE = —
K

51

K
S MSE;.
k=1

library(caret)

Loading required package: lattice

#i#
Attaching package: 'caret'

The following object is masked from 'package:purrr'
##
lift

52

Blood-Brain barrier data
data(BloodBrain)
length(logBBB)

[1] 208

dim(bbbDescr)

[1] 208 134

53

5-fold CV with sigma = 0.05
trainIndex <- createFolds(logBBB, k = 5)

str(trainIndex)

List of 5

¢ Foldl: int [1:41] 27 30 32 39 46 51 55 70 72 77
¢ Fold2: int [1:42] 3 7 8 9 15 21 24 25 26 31

¢ Fold3: int [1:42] 5 6 10 11 13 16 28 29 35 53 ..
$ Fold4: int [1:42] 1 2 17 20 22 23 33 34 42 44 ..
$ Fold5: int [1:41] 4 12 14 18 19 36 37 40 43 47 .

54

Let's redefine our functions from earlier
fit_rbf <- function(sigma, data_train, Y_train) {
rbf <- rbfdot(sigma = sigma)
Kmat <- kernelMatrix(rbf, data_train)
alpha_rbf <- solve(Kmat +
0.7+diag(nrow(data_train))) %*%
Y train
return(list(alpha = alpha_rbf, rbf = rbf))

55

pred_rbf <- function(fit, data_train, data_test) {
k_pred <- kernelMatrix(fit$rbf, data_train,
data_test)
pred_rbf <- drop(t(fit$alpha) %*J% k_pred)
return(pred_rbf)
}

56

sapply(trainIndex, function(index){

data_train <- bbbDescr([-index,] %>%
model .matrix(~ ., data = .)

Y train <- logBBB[-index]

data_test <- bbbDescr[index,] %>%
model .matrix(~ ., data = .)

fit_rbf <- fit_rbf(0.05, data_train, Y _train)

pred rbf <- pred_rbf(fit_rbf, data_train,

data_test)
mean ((logBBB[index] - pred_rbf)~2)
}) -> MSEs

57

MSEs

#i# Fold1l Fold2 Fold3 Fold4 Foldb5
0.7705720 0.7075762 0.4702274 0.5828595 0.4590561

mean (MSEs)

[1] 0.5980582

58

Now, we can repeat for multiple sigmas
mse_calc <- function(sigma, data_train, data_test,
Y train, Y test) {
fit rbf <- fit_rbf(sigma, data_train, Y_train)
pred_rbf <- pred_rbf(fit_rbf, data_train,
data_test)
mean((Y_test - pred_rbf)~2)
}

59

sapply(trainIndex, function(index){
data_train <- bbbDescr([-index,] %>%
model .matrix(~ ., data = .)
Y_train <- logBBB[-index]
data_test <- bbbDescr[index,] %>%
., data = .)

sapply(sigma_vect, mse_calc,

model .matrix(~

data_train = data_train,
data_test = data_test,

Y train = Y_train,

Y test = logBBB[index])}) -> MSEs

60

head (rowMeans (MSEs), n = 4)

[1] 0.5984216 0.5983566 0.5982986 0.5982486

data.frame(
sigma = sigma_vect,
MSE = rowMeans (MSEs)

) Wl
ggplot (aes(sigma, MSE)) +
geom_line() +
theme_minimal () +
scale_x_logl10()

61

Example xi

05984

05983

MSE

05982

05981

0.01 0.10 1.00
sigma

62

We can also tune lambda (see R code)
MSEs <- MSEs %>Y%
gather(sigma, MSE, -lambda) %>%

mutate(sigma = as.numeric(sigma))

head(MSEs, n = 3)

#i# lambda sigma MSE
1 1000.0000 1 0.6048670
2 545.5595 1 0.6048542

3 297.6351 1 0.6048309

63

MSEs %>%
ggplot (aes(lambda, MSE, group = sigma)) +
geom_line() +
theme_minimal () +
scale_x_logl0() +
geom_vline(xintercept = 0.7, linetype = 'dashed')

64

2
=

9
o
=
S
X

Ll

=
3

0.602

0.600

0598

10403

1e+01

01

le—

lambda

65

Example xv

MSEs %>%
filter (MSE == min(MSE))

lambda sigma MSE
1 0.01 0.01 0.5966406

66

Comments

= We can see that the MSE flattens out for all curves
around)\ ~ 0.1.

= Only incremental gains when reducing A further.
= Similarly, all curves converge to one another for different
sigma

= Only incremental gain when reducing sigma further.

= For these reasons, we could select A = 0.01 and sigma
0.01 as our prediction model.

= Note that this gives us better performance than a simple
linear model (for which MSE = 1.75).

67

General comments i

» Finding a good kernel function is difficult, and it involves
a lot of trial and error.
= One possible strategy: fit multiple kernels, tune them
all, and pick best.
= Even better strategy: fit multiple kernels, tune them all,
and combine the predictions.
= Unlike traditional methods, kernel methods suffer from
too much data.
= Recall that the Gram matrix K is n X n, and so it can

become very large.

68

General comments ii

= The limitations are mostly computational and related to
memory management, and accordingly there are multiple
tricks to make it work with “big data.
» Kernel methods tend to overfit, and therefore it is good
practice to regularise them using a penalty term
(e.g. ridge penalty).
= It's also good practice to compare kernel methods to
simpler methods (e.g. linear regression).
= If you can't beat a simple method, what’s the point of a

complicated one?

69

