Kernel Methods

Max Turgeon

STAT 4690-Applied Multivariate Analysis

Motivation

- Linearity has been an important assumption for most of the multivariate methods we have discussed.
 - Multivariate Linear Regression
 - PCA, FA, CCA
- This assumption may be more realistic after a transformation of the data.
 - E.g. Log transformation
 - Embedding in a higher dimensional space?

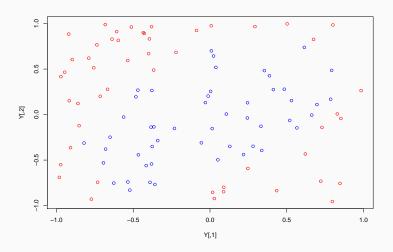
Example i

```
set.seed(1234)
n < -100
# Generate uniform data
Y \leftarrow cbind(runif(n, -1, 1),
            runif(n, -1, 1))
# Check if it falls inside ellipse
Sigma \leftarrow matrix(c(1, 0.5, 0.5, 1), ncol = 2)
dists <- sqrt(diag(Y %*% solve(Sigma) %*%
                      t(Y)))
inside <- dists < 0.85
```

Example ii

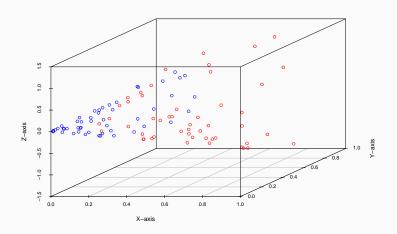
```
# Plot points
colours <- c("red", "blue")[inside + 1]
plot(Y, col = colours)</pre>
```

Example iii

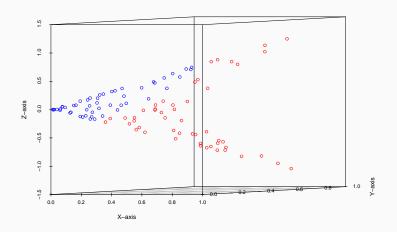


Example iv

Example v



Example vi



Example vii

```
# Linear regression
outcome <- ifelse(inside, 1, -1)
head(outcome)
## [1] -1 1 1 -1 -1 1
model1 <- lm(outcome ~ Y)
pred1 <- sign(predict(model1))</pre>
table(outcome, pred1) # 67%
```

Example viii

```
## pred1
## outcome -1 1
## -1 32 18
## 1 15 35

model2 <- lm(outcome ~ Y_transf)
pred2 <- sign(predict(model2))
table(outcome, pred2) # 92%</pre>
```

Example ix

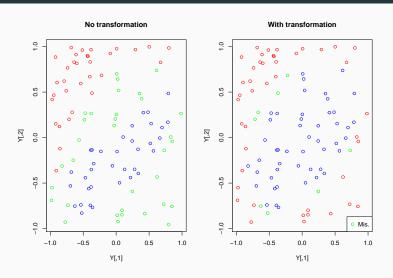
```
## pred2

## outcome -1 1

## -1 44 6

## 1 2 48
```

Example x



Overfitting i

- Overfitting is "the production of an analysis that corresponds too closely or exactly to a particular set of data, and may therefore fail to fit additional data or predict future observations reliably" (OED)
 - In other words, a model is overfitted if it explains the training data very well, but does poorly on test data.
- In regression, this often happens when we have too many covariates
 - Too many parameters for the sample size

Overfitting ii

- When embedding our covariates into a higher dimensional space, we are increasing the number of parameters.
 - There is a danger of overfitting.
- One possible solution: Regularised (or penalised) regression.
 - We constrain the parameter space using a penalty function.

Ridge regression i

- Let (Y_i, \mathbf{X}_i) , $i = 1, \dots, n$ be a sample of outcome with covariates.
- Univariate Linear Regression: Assume that we are interested in the linear model

$$Y_i = \beta^T \mathbf{X}_i + \epsilon_i.$$

 \bullet The Least-Squares estimate of β is given by

$$\hat{\beta}_{LS} = (\mathbb{X}^T \mathbb{X})^{-1} \mathbb{X} \mathbf{Y},$$

where

Ridge regression ii

$$\mathbb{X}^T = \begin{pmatrix} \mathbf{X}_1 & \cdots & \mathbf{X}_n \end{pmatrix},$$
$$\mathbf{Y} = (Y_1, \dots, Y_n).$$

- If the matrix $\mathbb{X}^T\mathbb{X}$ is almost singular, then the least-squares estimate will be unstable.
- **Solution**: Add a small quantity along its diagonal.

 - Bias-Variance trade-off

Ridge regression iii

 \bullet The Ridge estimate of β is given by

$$\hat{\beta}_R = (\mathbb{X}^T \mathbb{X} + \lambda I)^{-1} \mathbb{X}^T \mathbf{Y}.$$

Example i

```
library(ElemStatLearn)
library(tidyverse)
data train <- prostate %>%
  filter(train == TRUE) %>%
  dplyr::select(-train)
data test <- prostate %>%
  filter(train == FALSE) %>%
  dplyr::select(-train)
```

Example ii

Example iii

Example iv

[1] 0.5060843

Dual problem i

 The Ridge estimate actually minimises a regularized least-squares function:

$$RLS(\beta) = \frac{1}{2} \sum_{i=1}^{n} (Y_i - \beta^T \mathbf{X}_i)^2 + \frac{\lambda}{2} \beta^T \beta.$$

• If we take the derivative with respect to β , we get

$$\frac{\partial}{\partial \beta} RLS(\beta) = -\sum_{i=1}^{n} (Y_i - \beta^T \mathbf{X}_i) \mathbf{X}_i + \lambda \beta.$$

Setting it equal to 0 and rearranging, we get

$$\beta = \frac{1}{\lambda} \sum_{i=1}^{n} (Y_i - \beta^T \mathbf{X}_i) \mathbf{X}_i.$$

Dual problem ii

• Define $a_i = \frac{1}{\lambda}(Y_i - \beta^T \mathbf{X}_i)$. We then get

$$\beta = \sum_{i=1}^{n} a_i \mathbf{X}_i = \mathbb{X}^T \alpha,$$

where $\alpha = (a_1, \ldots, a_n)$.

• Why? We can now rewrite $RLS(\beta)$ as a function of α . First note that

$$RLS(\beta) = \frac{1}{2} (\mathbf{Y} - \mathbb{X}\beta)^T (\mathbf{Y} - \mathbb{X}\beta) + \frac{\lambda}{2} \beta^T \beta.$$

Dual problem iii

• Now we can substitute $\beta = \mathbb{X}^T \alpha$:

$$RLS(\alpha) = \frac{1}{2} (\mathbf{Y} - \mathbb{X} \mathbb{X}^T \alpha)^T (\mathbf{Y} - \mathbb{X} \mathbb{X}^T \alpha) + \frac{\lambda}{2} (\mathbb{X}^T \alpha)^T (\mathbb{X}^T \alpha)$$
$$= \frac{1}{2} (\mathbf{Y} - (\mathbb{X} \mathbb{X}^T) \alpha)^T (\mathbf{Y} - (\mathbb{X} \mathbb{X}^T) \alpha) + \frac{\lambda}{2} \alpha^T (\mathbb{X} \mathbb{X}^T) \alpha.$$

- \blacksquare This formulation of regularised least squares in terms of α is called the **dual problem**.
- **Key observation**: $RLS(\alpha)$ depends on X_i only through the Gram matrix $\mathbb{X}\mathbb{X}^T$.
 - If we all we know are the dot products of the covariates X_i , we can still solve the ridge regression problem.

Kernel ridge regression i

- Suppose we have a transformation $\Phi: \mathbb{R}^p \to \mathbb{R}^N$, where N is typically larger than p and can even be infinity.
- Let K be the $n \times n$ matrix whose (i, j)-th entry is the dot product between $\Phi(\mathbf{X}_i)$ and $\Phi(\mathbf{X}_j)$:

$$K_{ij} = \Phi(\mathbf{X}_i)^T \Phi(\mathbf{X}_j).$$

• Important observation: This actually induces a map on pairs of points in \mathbb{R}^p :

$$k(\mathbf{X}_i, \mathbf{X}_j) = \Phi(\mathbf{X}_i)^T \Phi(\mathbf{X}_j).$$

• We will call the function k the **kernel function**.

Kernel ridge regression ii

Now, we can use the dual formulation of ridge regression to fit a linear model between Y_i and the transformed $\Phi(X_i)$:

$$Y_i = \beta^T \Phi(\mathbf{X}_i) + \epsilon_i.$$

• By setting the derivative of $RLS(\alpha)$ equal to zero and solving for α , we see that

$$\hat{\alpha} = (K + \lambda I_n)^{-1} \mathbf{Y}.$$

Kernel ridge regression iii

Note that we would need to know all the images $\Phi(\mathbf{X}_i)$ to recover $\hat{\beta}$ from $\hat{\alpha}$. On the other hand, we don't actually need $\hat{\beta}$ to obtain the *fitted* values:

$$\hat{\mathbf{Y}} = \Phi(\mathbb{X})\hat{\beta} = \Phi(\mathbb{X})\Phi(\mathbb{X})^T\hat{\alpha} = K\hat{\alpha}.$$

• To obtain the predicted value for a new covariate profile $\tilde{\mathbf{X}}$, first compute all the dot products in the feature space:

$$\mathbf{k} = (k(\mathbf{X}_1, \tilde{\mathbf{X}}), \dots, k(\mathbf{X}_n, \tilde{\mathbf{X}})).$$

Kernel ridge regression iv

We can then obtain the predicted value:

$$\tilde{Y} = \hat{\beta}^T \Phi(\tilde{\mathbf{X}})
= \hat{\alpha}^T \Phi(\mathbb{X}) \Phi(\tilde{\mathbf{X}})
= \hat{\alpha}^T \mathbf{k}
= \mathbf{k}^T (K + \lambda I_n)^{-1} \mathbf{Y}.$$

Example (cont'd) i

Example (cont'd) ii

```
# Ridge regression
beta hat <- solve(crossprod(X train) +
                    0.7*diag(ncol(X train))) %*%
 t(X train) ** Y train
beta hat[1:3]
## [1] 0.1323063 0.5709660 0.6160020
```

Example (cont'd) iii

```
# Dual problem
alpha hat <- solve(tcrossprod(X train) +</pre>
                     0.7*diag(nrow(X train))) %*%
  Y train
(t(X train) %*% alpha hat)[1:3]
## [1] 0.1323063 0.5709660 0.6160020
all.equal(beta_hat, t(X_train) %*% alpha hat)
## [1] TRUE
```

Important observation

- We assumed that we had an embedding of the data into a higher dimensional space.
- But our derivation only required the dot products of our observations in the feature space.
- Therefore, we don't need to explicitly define the transformation.
- All we need is to define a kernel function.

Definition

- We need a way to test whether a function $k(\mathbf{X}_i, \mathbf{X}_j)$ is a valid kernel, i.e. that it arises from a dot product in some higher dimensional space.
- **Theorem**: A necessary and sufficient condition for $k(\cdot, \cdot)$ to be a valid kernel is that the Gram matrix K, whose (i, j)-th element is $k(\mathbf{X}_i, \mathbf{X}_j)$, is positive semidefinite for all choices of subsets $\{\mathbf{X}_1, \dots, \mathbf{X}_n\}$ from the sample space.
 - In particular, $k(\cdot, \cdot)$ needs to be *symmetric*.

Examples of valid kernels

- 1. Polynomial kernel: $k(\mathbf{X}_i, \mathbf{X}_j) = (\mathbf{X}_i^T \mathbf{X}_j + c)^d$, for a non-negative real number c and d is a positive integer.
- 2. Sigmoidal kernel: $k(\mathbf{X}_i, \mathbf{X}_j) = \tanh(a\mathbf{X}_i^T\mathbf{X}_j b)$, for a, b > 0 real numbers.
- 3. Gaussian kernel: $k(\mathbf{X}_i, \mathbf{X}_j) = \exp(-\|\mathbf{X}_i \mathbf{X}_j\|^2 / 2\sigma^2)$, where $\sigma^2 > 0$.

In general, kernel functions measure **similarity** between the inputs.

And note that the inputs need not be elements of \mathbb{R}^p : you can define kernel functions on strings (for NLP) and graphs (for network analysis).

Combining kernels i

A powerful of creating new kernels is by combining old ones: let k_1, k_2 be kernels, c a constant, A a positive semidefinite matrix, and f a real-valued function. Then the following are also valid kernels:

- 1. $k(\mathbf{X}_i, \mathbf{X}_j) = ck_1(\mathbf{X}_i, \mathbf{X}_j)$
- 2. $k(\mathbf{X}_i, \mathbf{X}_j) = f(\mathbf{X}_i)k_1(\mathbf{X}_i, \mathbf{X}_j)f(\mathbf{X}_i)$
- 3. $k(\mathbf{X}_i, \mathbf{X}_j) = \exp(k_1(\mathbf{X}_i, \mathbf{X}_j))$
- 4. $k(\mathbf{X}_i, \mathbf{X}_j) = k_1(\mathbf{X}_i, \mathbf{X}_j) + k_2(\mathbf{X}_i, \mathbf{X}_j)$
- 5. $k(\mathbf{X}_i, \mathbf{X}_j) = k_1(\mathbf{X}_i, \mathbf{X}_j)k_2(\mathbf{X}_i, \mathbf{X}_j)$
- 6. $k(\mathbf{X}_i, \mathbf{X}_j) = \mathbf{X}_i A \mathbf{X}_j$

Choosing a kernel function

- With so many choices, how can we choose the right kernel?
- One approach is to use a kernel that measures similarity in a manner relevant to your problem:
 - For polynomial kernels with c=0, they are invariant to orthogonal transformations of the feature space.
- There are also ways of combining the results from different kernels:

Prediction: Ensemble methods

• Inference: Omnibus tests

Example (cont'd) i

library(kernlab)

```
##
## Attaching package: 'kernlab'
## The following object is masked from 'package:purrr'
##
## cross
```

Example (cont'd) ii

```
## The following object is masked from 'package:ggplot's
##
##
       alpha
# Let's use the quadratic kernel
poly <- polydot(degree = 2)</pre>
Kmat <- kernelMatrix(poly, X train)</pre>
Kmat[1:3, 1:3]
```

Example (cont'd) iii

##

```
## 1 6501734 8712023 14104480
## 2 8712023 11681713 18916284
## 3 14104480 18916284 35263969

alpha_poly <- solve(Kmat + 0.7*diag(nrow(X_train))) %*
    Y_train</pre>
```

Example (cont'd) iv

```
# Let's predict the test data
X test <- model.matrix(lpsa ~ .,</pre>
                         data = data test)
k pred <- kernelMatrix(poly, X train, X test)</pre>
pred poly <- drop(t(alpha poly) %*% k pred)</pre>
mean((data test$lpsa - pred poly)^2)
## [1] 1.007974
```

Example (cont'd) v

Example (cont'd) vi

```
# Now let's try a Gaussian kernel
# Note: Look at documentation for
# parametrisation
rbf <- rbfdot(sigma = 0.05)
Kmat <- kernelMatrix(rbf, X_train)
alpha_rbf <- solve(Kmat + 0.7*diag(nrow(X_train))) %*%
Y_train</pre>
```

Example (cont'd) vii

```
k_pred <- kernelMatrix(rbf, X_train, X_test)

pred_rbf <- drop(t(alpha_rbf) %*% k_pred)
mean((data_test$lpsa - pred_rbf)^2)

## [1] 3.530104</pre>
```

Example (cont'd) viii

```
# Can we do better by choosing a different sigma?
n <- nrow(X train)</pre>
fit rbf <- function(sigma) {
  rbf <- rbfdot(sigma = sigma)</pre>
  Kmat <- kernelMatrix(rbf, X train)</pre>
  alpha rbf <- solve(Kmat + 0.7*diag(n)) %*%
    Y train
  return(list(alpha = alpha rbf,
               rbf = rbf)
```

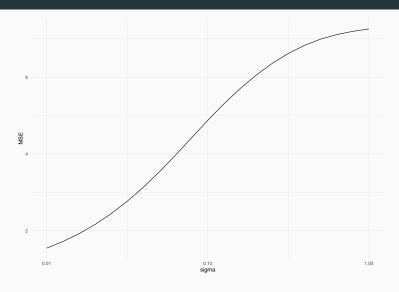
Example (cont'd) ix

Example (cont'd) x

Example (cont'd) xi

```
data.frame(
  sigma = sigma_vect,
  MSE = MSE
) %>%
 ggplot(aes(sigma, MSE)) +
  geom_line() +
  theme_minimal() +
  scale_x_log10()
```

Example (cont'd) xii



Example (cont'd) xiii

```
data.frame(
  sigma = sigma vect,
 MSE = MSE
) %>%
 filter(MSE == min(MSE))
## sigma MSE
## 1 0.01 1.543654
```

Cross-validation i

- In the example above, we saw that we can tune (or select) the parameter sigma by fitting various models and computing the resulting MSE on the test data.
- Note that this is the most accurate way to estimate the generalization capabilities of your model.
- In practice, if you don't have enough data to set aside a testing dataset, you can use cross-validation to derive a similar estimate.

Cross-validation ii

Algorithm

Let K > 1 be a positive integer.

- 1. Separate your data into K subsets of (approximately) equal size.
- 2. For $k=1,\ldots,K$, put aside the k-th subset and use the remaining K-1 subsets to train your algorithm.
- 3. Using the trained algorithm, predict the values for the held out data.
- 4. Calculate MSE_k as the Mean Squared-Error for these predictions.
- 5. The overall MSE estimate is given by

$$MSE = \frac{1}{K} \sum_{k=1}^{K} MSE_k.$$

Example i

```
library(caret)
## Loading required package: lattice
##
## Attaching package: 'caret'
## The following object is masked from 'package:purrr'
##
##
       lift
```

Example ii

```
# Blood-Brain barrier data
data(BloodBrain)
length(logBBB)
## [1] 208
dim(bbbDescr)
## [1] 208 134
```

Example iii

```
# 5-fold CV with sigma = 0.05
trainIndex <- createFolds(logBBB, k = 5)
str(trainIndex)
## List of 5
    $ Fold1: int [1:41] 27 30 32 39 46 51 55 70 72 77
##
    $ Fold2: int [1:42] 3 7 8 9 15 21 24 25 26 31 ...
##
##
    $ Fold3: int [1:42] 5 6 10 11 13 16 28 29 35 53 ...
    $ Fold4: int [1:42] 1 2 17 20 22 23 33 34 42 44 ...
##
##
    $ Fold5: int [1:41] 4 12 14 18 19 36 37 40 43 47 .
```

Example iv

```
# Let's redefine our functions from earlier
fit rbf <- function(sigma, data train, Y train) {
  rbf <- rbfdot(sigma = sigma)</pre>
  Kmat <- kernelMatrix(rbf, data train)</pre>
  alpha rbf <- solve(Kmat +
                        0.7*diag(nrow(data train))) %*%
    Y train
  return(list(alpha = alpha rbf, rbf = rbf))
```

Example v

Example vi

```
sapply(trainIndex, function(index){
         data train <- bbbDescr[-index,] %>%
           model.matrix( ~ ., data = .)
         Y train <- logBBB[-index]
         data test <- bbbDescr[index,] %>%
           model.matrix( ~ ., data = .)
         fit rbf <- fit rbf(0.05, data train, Y train)
         pred rbf <- pred rbf(fit rbf, data train,</pre>
                               data test)
         mean((logBBB[index] - pred rbf)^2)
       }) -> MSEs
```

Example vii

```
MSEs
##
      Fold1
              Fold2 Fold3 Fold4 Fold5
## 0.7705720 0.7075762 0.4702274 0.5828595 0.4590561
mean(MSEs)
## [1] 0.5980582
```

Example viii

Example ix

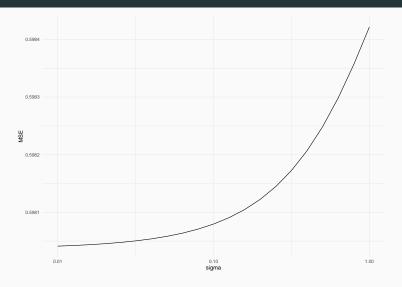
```
sapply(trainIndex, function(index){
         data train <- bbbDescr[-index,] %>%
           model.matrix( ~ ., data = .)
         Y train <- logBBB[-index]
         data test <- bbbDescr[index,] %>%
           model.matrix( ~ ., data = .)
         sapply(sigma vect, mse calc,
                data train = data train,
                data test = data test,
                Y train = Y train,
                Y test = logBBB[index])}) -> MSEs
```

Example x

head(rowMeans(MSEs), n = 4)

```
## [1] 0.5984216 0.5983566 0.5982986 0.5982486
data.frame(
  sigma = sigma vect,
  MSE = rowMeans(MSEs)
) %>%
  ggplot(aes(sigma, MSE)) +
  geom line() +
  theme_minimal() +
  scale_x_log10()
```

Example xi



Example xii

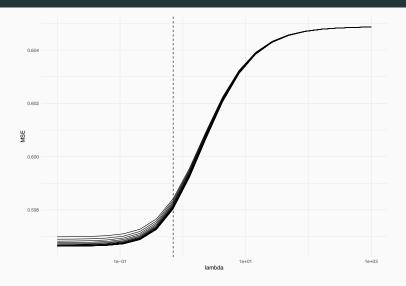
```
# We can also tune lambda (see R code)
MSEs <- MSEs %>%
  gather(sigma, MSE, -lambda) %>%
  mutate(sigma = as.numeric(sigma))
head(MSEs, n = 3)
```

```
## lambda sigma MSE
## 1 1000.0000 1 0.6048670
## 2 545.5595 1 0.6048542
## 3 297.6351 1 0.6048309
```

Example xiii

```
MSEs %>%
  ggplot(aes(lambda, MSE, group = sigma)) +
  geom_line() +
  theme_minimal() +
  scale_x_log10() +
  geom_vline(xintercept = 0.7, linetype = 'dashed')
```

Example xiv



Example xv

Comments

- We can see that the MSE flattens out for all curves around $\lambda \approx 0.1$.
 - Only incremental gains when reducing λ further.
- Similarly, all curves converge to one another for different sigma
 - Only incremental gain when reducing sigma further.
- For these reasons, we could select $\lambda=0.01$ and sigma = 0.01 as our prediction model.
- Note that this gives us better performance than a simple linear model (for which MSE = 1.75).

General comments i

- Finding a good kernel function is difficult, and it involves a lot of trial and error.
 - One possible strategy: fit multiple kernels, tune them all, and pick best.
 - Even better strategy: fit multiple kernels, tune them all, and combine the predictions.
- Unlike traditional methods, kernel methods suffer from too much data.
 - Recall that the Gram matrix K is $n \times n$, and so it can become very large.

General comments ii

- The limitations are mostly computational and related to memory management, and accordingly there are multiple tricks to make it work with "big data".
- Kernel methods tend to overfit, and therefore it is good practice to regularise them using a penalty term (e.g. ridge penalty).
- It's also good practice to compare kernel methods to simpler methods (e.g. linear regression).
 - If you can't beat a simple method, what's the point of a complicated one?