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» Linearity has been an important assumption for most of
the multivariate methods we have discussed.
= Multivariate Linear Regression
= PCA, FA, CCA
= This assumption may be more realistic after a
transformation of the data.

= E.g. Log transformation
= Embedding in a higher dimensional space?



set.seed(1234)

n <- 100

# Generate uniform data

Y <- cbind(runif(n, -1, 1),
runif(n, -1, 1))

# Check 1if it falls inside ellipse

Sigma <- matrix(c(1, 0.5, 0.5, 1), ncol = 2)

dists <- sqrt(diag(Y %x*% solve(Sigma) %*%
t(Y)))

inside <- dists < 0.85



# Plot points
colours <- c("red", "blue") [inside + 1]

plot(Y, col = colours)
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# Transform data

# (X, Y) > (X2, Y2, sqrt(2)*X*Y)

Y transf <- cbind(Y[,1]1°2, Y[,2]"2,
sqrt (2)*Y[,11*Y[,2])

library(scatterplot3d)
scatterplot3d(Y_transf, color = colours,
xlab = "X-axis",
ylab = "Y-axis",

zlab = "Z-axis")
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# Linear regression
outcome <- ifelse(inside, 1, -1)

head (outcome)

## [1] -1 1 1 -1 -1 1

modell <- 1m(outcome ~ Y)
predl <- sign(predict(modell))
table(outcome, predl) # 677



#i#t predl

## outcome -1 1
## -1 32 18
## 1 15 35

model2 <- 1lm(outcome ~ Y transf)
pred2 <- sign(predict(model2))
table(outcome, pred2) # 927
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#i# pred2
## outcome -1 1
#it -1 44 6

#it 1 248
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= Overfitting is “the production of an analysis that
corresponds too closely or exactly to a particular set of
data, and may therefore fail to fit additional data or
predict future observations reliably” (OED)
= In other words, a model is overfitted if it explains the
training data very well, but does poorly on test data.
= In regression, this often happens when we have too many
covariates

= Too many parameters for the sample size
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Overfitting

= When embedding our covariates into a higher dimensional
space, we are increasing the number of parameters.

= There is a danger of overfitting.

= One possible solution: Regularised (or penalised)
regression.

= We constrain the parameter space using a penalty
function.
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Ridge regression i

» Let (V;,X;),i=1,...,n be a sample of outcome with

covariates.
= Univariate Linear Regression: Assume that we are

interested in the linear model
Y, =8"X; + €.
» The Least-Squares estimate of 3 is given by
Brs = (XTX)7IXY,
where
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Ridge regression ii

X=(X; - X,),
Y = (Yi,...,Y,).

= If the matrix X”7X is almost singular, then the
least-squares estimate will be unstable.
= Solution: Add a small quantity along its diagonal.
» XIX — XTX + A
= Bias-Variance trade-off
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Ridge regression iii

» The Ridge estimate of 3 is given by

Br=(XTX+ A)'XTY.
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library(ElemStatLearn)
library(tidyverse)

data_train <- prostate %>’
filter(train == TRUE) %>%
dplyr::select(-train)

data_test <- prostate %>%
filter(train == FALSE) %>%
dplyr: :select(-train)
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modell <- 1m(lpsa ~ .,
data = data_train)
predl <- predict(modell, data_test)

mean((data_test$lpsa - predl)~2)

## [1] 0.521274
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# glmnet does lasso, elastic-net and
# ridge regression
library(glmnet)
X_train <- model.matrix(lpsa ~ . - 1,
data = data_train)
model2 <- glmnet(X_train, data_train$lpsa,
alpha = 0, lambda = 0.7)
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X_test <- model.matrix(lpsa ~ . - 1,
data = data_test)
pred2 <- predict(model2, X_test)

mean((data_test$lpsa - pred2)~2)

## [1] 0.5060843
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Dual problem i

= The Ridge estimate actually minimises a regularized
least-squares function:

RLS(B f:y BTX;)? +35T5.

l\')\»—t

» If we take the derivative with respect to (3, we get
a n

g RLs(B) =~ 2 (¥i~ BTX;)X; + AB.
i=1

= Setting it equal to 0 and rearranging, we get

ij BTX)X

>/\>—‘
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Dual problem ii

= Define a; = £(Y; — 87X;). We then get
b= Z%Xi = X"a,
i=1
where a = (aq, ..., a,).

= Why? We can now rewrite RLS(/3) as a function of a.
First note that

RLS(8) = (Y ~ XB)7(Y — X6) + 5675,
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Dual problem iii

= Now we can substitute 3 = X a:

RLS(a) = ;(Y — XXTa)T(Y - XXTa) + ;\(XTQ)T(XTQ)
1

= 5(Y - XX ) (Y — (XX1)a) + ;\aT(XXT)oz.

= This formulation of regularised least squares in terms of «
is called the dual problem.

= Key observation: RLS(«) depends on X; only through
the Gram matrix XX7.

= If we all we know are the dot products of the covariates
X, we can still solve the ridge regression problem.
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Kernel ridge regression i

= Suppose we have a transformation ® : R? — R”", where
N is typically larger than p and can even be infinity.

» Let K be the n x n matrix whose (i, j)-th entry is the
dot product between ®(X;) and ®(X;):

K = o(X;)"®(X;).

» Important observation: This actually induces a map on
pairs of points in R?:

(X, X;) = ©(X;)T0(X).

= We will call the function k& the kernel function.
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Kernel ridge regression ii

= Now, we can use the dual formulation of ridge regression
to fit a linear model between Y; and the transformed
d(X;):
Y = Te(X;) + e
= By setting the derivative of RLS(«) equal to zero and
solving for «, we see that

a=(K+\,)'Y.
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Kernel ridge regression iii

= Note that we would need to know all the images ®(X;)
to recover ﬁ from &. On the other hand, we don't
actually need B to obtain the fitted values:

Y = 3(X)4 = (X)(X) & = Ka.

» To obtain the predicted value for a new covariate profile
X, first compute all the dot products in the feature space:

k = (k(X1,X), ..., k(X,,X)).
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Kernel ridge regression iv

» We can then obtain the predicted value:

28



Example (cont’'d) i

# Let's start with the tdentity map for Pht
# We should get the same results as Ridge regression
X_train <- model.matrix(lpsa ~ .,

data = data_train)

Y _train <- data_train$lpsa
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Example (cont’d) ii

# Ridge regression
beta_hat <- solve(crossprod(X_train) +
0.7+diag(ncol(X_train))) %*%
t(X_train) %*’% Y train

beta_hat[1:3]

## [1] 0.1323063 0.5709660 0.6160020
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Example (cont’d) iii

# Dual problem
alpha _hat <- solve(tcrossprod(X_train) +
0.7xdiag(nrow(X_train))) %*%

Y train
(t(X_train) %#*% alpha_hat) [1:3]

## [1] 0.1323063 0.5709660 0.6160020

all.equal(beta_hat, t(X_train) %*’ alpha_hat)

## [1] TRUE
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Important observation

= We assumed that we had an embedding of the data into
a higher dimensional space.

» But our derivation only required the dot products of our
observations in the feature space.

= Therefore, we don't need to explicitly define the
transformation.

= All we need is to define a kernel function.
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= We need a way to test whether a function k(X;,X;) is a
valid kernel, i.e. that it arises from a dot product in some
higher dimensional space.

» Theorem: A necessary and sufficient condition for (-, -)
to be a valid kernel is that the Gram matrix K, whose
(i,7)-th element is k(X;, X,), is positive semidefinite for
all choices of subsets {Xy,...,X,} from the sample
space.

= In particular, k(-,-) needs to be symmetric.
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Examples of valid kernels

1. Polynomial kernel: k(X;,X;) = (XI'X; + ¢)?, for a
non-negative real number ¢ and d is a positive integer.

2. Sigmoidal kernel: k(X;, X;) = tanh(aX!X; —b), for
a,b > 0 real numbers.

3. Gaussian kernel: k(X;,X;) = exp (—||X; — X;||?/20?),
where o2 > 0.

In general, kernel functions measure similarity between the

inputs.

And note that the inputs need not be elements of R”: you can
define kernel functions on strings (for NLP) and graphs (for

network analysis).
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Combining kernels i

A powerful of creating new kernels is by combining old ones:
let k1, ko be kernels, ¢ a constant, A a positive semidefinite
matrix, and f a real-valued function. Then the following are
also valid kernels:

1. k(X X)) = cki (X, X))

2. (X, X;) = f(X)k (X5, X;) f(X;)
3. k(X;, X;) = exp(k1(X;, X))

4. k(X;, X;) = ki(Xs, X5) + k2(X;, X))
5. k(X;,X,) = ki(Xy, X)) ka(X, X5)

6. k(X;,X,) = X;AX;;
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Choosing a kernel function

» With so many choices, how can we choose the right
kernel?
= One approach is to use a kernel that measures similarity
in a manner relevant to your problem:
= For polynomial kernels with ¢ = 0, they are invariant to
orthogonal transformations of the feature space.
» There are also ways of combining the results from
different kernels:
= Prediction: Ensemble methods
= Inference: Omnibus tests
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Example (cont’'d) i

library(kernlab)

##
## Attaching package: 'kernlab'

## The following object is masked from 'package:purrr'

#Hit

## cross
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Example (cont’d) ii

## The following object is masked from 'package:ggplot:
##
#H# alpha

# Let's use the quadratic kernel

poly <- polydot(degree = 2)

Kmat <- kernelMatrix(poly, X _train)
Kmat[1:3, 1:3]
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Example (cont’d) iii

#i# 1 2 3
## 1 6501734 8712023 14104480
## 2 8712023 11681713 18916284
## 3 14104480 18916284 35263969

alpha_poly <- solve(Kmat + 0.7*diag(nrow(X_train))) %=

Y train
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Example (cont’d) iv

# Let's predict the test data
X_test <- model.matrix(lpsa ~ .,

data = data_test)
k_pred <- kernelMatrix(poly, X_train, X_test)

pred_poly <- drop(t(alpha_poly) %+’ k_pred)
mean((data_test$lpsa - pred_poly)~2)

## [1] 1.007974
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Example (cont’d) v

# Compare with linear kernel
pred_lin <- drop(t(alpha_hat) %*%
tcrossprod(X_train, X test))

mean ((data_test$lpsa - pred_lin)~2)

## [1] 0.5180924
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Example (cont’d) vi

# Now let's try a Gaussian kernel
# Note: Look at documentation for
# parametrisation

rbf <- rbfdot(sigma = 0.05)

Kmat <- kernelMatrix(rbf, X train)

alpha_rbf <- solve(Kmat + 0.7*diag(nrow(X_train))) %

Y train
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Example (cont’d) vii

k_pred <- kernelMatrix(rbf, X_train, X _test)

pred_rbf <- drop(t(alpha_rbf) %*J) k_pred)
mean ((data_test$lpsa - pred_rbf)~2)

## [1] 3.530104
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Example (cont’d) viii

# Can we do better by choosing a different sigma?

n <- nrow(X_train)

fit_rbf <- function(sigma) {
rbf <- rbfdot(sigma = sigma)
Kmat <- kernelMatrix(rbf, X train)
alpha_rbf <- solve(Kmat + 0.7xdiag(n)) %*%
Y train
return(list(alpha = alpha_rbf,
rbf = rbf))
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Example (cont’d) ix

pred_rbf <- function(fit) {
k_pred <- kernelMatrix(fit$rbf, X_train,
X _test)
pred_rbf <- drop(t(fit$alpha) %*J% k_pred)
return(pred_rbf)
}
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Example (cont’d) x

sigma_vect <- 107seq(0, -2, by = -0.1)
MSE <- sapply(sigma_vect,
function (sigma) {
fit_rbf <- fit_rbf(sigma)
pred_rbf <- pred_rbf(fit_rbf)
mean ((data_test$lpsa - pred_rbf)~2)
b
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Example (cont’d) xi

data.frame(
sigma = sigma_vect,
MSE = MSE

) ©>h
ggplot (aes(sigma, MSE)) +
geom_line() +
theme_minimal () +

scale_x_logl10()
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Example (cont’d) xii

MSE

0.01 0.10 1.00
sigma
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Example (cont’d) xiii

data.frame (
sigma = sigma_vect,
MSE = MSE
) %>h
filter (MSE == min(MSE))

##  sigma MSE
## 1 0.01 1.543654
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Cross-validation i

= In the example above, we saw that we can tune (or
select) the parameter sigma by fitting various models and
computing the resulting MSE on the test data.

= Note that this is the most accurate way to estimate the
generalization capabilities of your model.

» In practice, if you don't have enough data to set aside a
testing dataset, you can use cross-validation to derive a
similar estimate.
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Cross-validation ii

Algorithm
Let K > 1 be a positive integer.

1. Separate your data into K subsets of (approximately)
equal size.

2. For k=1,..., K, put aside the k-th subset and use the
remaining ' — 1 subsets to train your algorithm.

3. Using the trained algorithm, predict the values for the
held out data.

4. Calculate M SFE}, as the Mean Squared-Error for these
predictions.

5. The overall MSE estimate is given by

1
MSE = —
K

51
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library(caret)

## Loading required package: lattice

#i#
## Attaching package: 'caret'

## The following object is masked from 'package:purrr'
##
## lift
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# Blood-Brain barrier data
data(BloodBrain)
length(logBBB)

## [1] 208

dim(bbbDescr)

## [1] 208 134
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# 5-fold CV with sigma = 0.05
trainIndex <- createFolds(logBBB, k = 5)

str(trainIndex)

## List of 5

## ¢ Foldl: int [1:41] 27 30 32 39 46 51 55 70 72 77
## ¢ Fold2: int [1:42] 3 7 8 9 15 21 24 25 26 31

## ¢ Fold3: int [1:42] 5 6 10 11 13 16 28 29 35 53 ..
## $ Fold4: int [1:42] 1 2 17 20 22 23 33 34 42 44 ..
## $ Fold5: int [1:41] 4 12 14 18 19 36 37 40 43 47 .
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# Let's redefine our functions from earlier
fit_rbf <- function(sigma, data_train, Y_train) {
rbf <- rbfdot(sigma = sigma)
Kmat <- kernelMatrix(rbf, data_train)
alpha_rbf <- solve(Kmat +
0.7+diag(nrow(data_train))) %*%
Y train
return(list(alpha = alpha_rbf, rbf = rbf))
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pred_rbf <- function(fit, data_train, data_test) {
k_pred <- kernelMatrix(fit$rbf, data_train,
data_test)
pred_rbf <- drop(t(fit$alpha) %*J% k_pred)
return(pred_rbf)
}
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sapply(trainIndex, function(index){

data_train <- bbbDescr([-index,] %>%
model .matrix( ~ ., data = .)

Y train <- logBBB[-index]

data_test <- bbbDescr[index,] %>%
model .matrix( ~ ., data = .)

fit_rbf <- fit_rbf(0.05, data_train, Y _train)

pred rbf <- pred_rbf(fit_rbf, data_train,

data_test)
mean ( (logBBB[index] - pred_rbf)~2)
}) -> MSEs
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MSEs

#i# Fold1l Fold2 Fold3 Fold4 Foldb5
## 0.7705720 0.7075762 0.4702274 0.5828595 0.4590561

mean (MSEs)

## [1] 0.5980582
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# Now, we can repeat for multiple sigmas
mse_calc <- function(sigma, data_train, data_test,
Y train, Y test) {
fit rbf <- fit_rbf(sigma, data_train, Y_train)
pred_rbf <- pred_rbf(fit_rbf, data_train,
data_test)
mean((Y_test - pred_rbf)~2)
}
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sapply(trainIndex, function(index){
data_train <- bbbDescr([-index,] %>%
model .matrix( ~ ., data = .)
Y_train <- logBBB[-index]
data_test <- bbbDescr[index,] %>%
., data = .)

sapply(sigma_vect, mse_calc,

model .matrix( ~

data_train = data_train,
data_test = data_test,

Y train = Y_train,

Y test = logBBB[index])}) -> MSEs
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head (rowMeans (MSEs), n = 4)

## [1] 0.5984216 0.5983566 0.5982986 0.5982486

data.frame(
sigma = sigma_vect,
MSE = rowMeans (MSEs)

) Wl
ggplot (aes(sigma, MSE)) +
geom_line() +
theme_minimal () +
scale_x_logl10()
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Example xi

05984

05983

MSE

05982

05981

0.01 0.10 1.00
sigma
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# We can also tune lambda (see R code)
MSEs <- MSEs %>Y%
gather(sigma, MSE, -lambda) %>%

mutate(sigma = as.numeric(sigma))

head(MSEs, n = 3)

#i# lambda sigma MSE
## 1 1000.0000 1 0.6048670
## 2 545.5595 1 0.6048542

## 3 297.6351 1 0.6048309
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MSEs %>%
ggplot (aes(lambda, MSE, group = sigma)) +
geom_line() +
theme_minimal () +
scale_x_logl0() +
geom_vline(xintercept = 0.7, linetype = 'dashed')
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Example xv

MSEs %>%
filter (MSE == min(MSE))

##  lambda sigma MSE
## 1 0.01 0.01 0.5966406
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Comments

= We can see that the MSE flattens out for all curves
around )\ ~ 0.1.

= Only incremental gains when reducing A further.
= Similarly, all curves converge to one another for different
sigma

= Only incremental gain when reducing sigma further.

= For these reasons, we could select A = 0.01 and sigma
0.01 as our prediction model.

= Note that this gives us better performance than a simple
linear model (for which MSE = 1.75).
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General comments i

» Finding a good kernel function is difficult, and it involves
a lot of trial and error.
= One possible strategy: fit multiple kernels, tune them
all, and pick best.
= Even better strategy: fit multiple kernels, tune them all,
and combine the predictions.
= Unlike traditional methods, kernel methods suffer from
too much data.
= Recall that the Gram matrix K is n X n, and so it can

become very large.
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General comments ii

= The limitations are mostly computational and related to
memory management, and accordingly there are multiple
tricks to make it work with “big data.
» Kernel methods tend to overfit, and therefore it is good
practice to regularise them using a penalty term
(e.g. ridge penalty).
= It's also good practice to compare kernel methods to
simpler methods (e.g. linear regression).
= If you can't beat a simple method, what’s the point of a

complicated one?
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