
Manifold Learning

Max Turgeon

STAT 4690–Applied Multivariate Analysis

Dimension reduction redux i

• Recall Pearson’s approach to PCA: best approximation
of the data by a linear manifold.

• Let’s unpack this definition:
• We’re looking for a linear subspace of Rp of dimension k.
• For a fixed k, we want to minimise the error when

projecting onto the linear subspace.
• We can also identify that subspace with Rk (e.g. for

visualisation).

2

Dimension reduction redux ii

• Manifold learning is a nonlinear approach to dimension
reduction, where:

• We assume the data lies on (or close to) a nonlinear
manifold of dimension k in Rp.

• We project the data from the manifold to Rk.
• There are two main classes of methods:

• Distance preserving (e.g. Isomap);
• Topology preserving (e.g. Locally linear embedding)

3

Manifolds–Definition

• Roughly speaking, manifolds of dimension k are
geometric objects that locally look like Rk.

• Every point on the manifold has an open neighbourhood
that is equivalent to an open ball in Rk.

• Examples in Rp include any curve, the
(p − 1)-dimensional sphere, or any linear subspace.

• Some manifolds have boundaries (e.g. a cylinder) or
corners (e.g. a cube).

4

Swiss roll i

n <- 1000
F1 <- runif(n, 0, 10)
F2 <- runif(n, -1, 1)

X <- F1 * cos(F1)
Y <- F2
Z <- F1 * sin(F1)

5

Swiss roll ii

library(scatterplot3d)
library(colorspace)
colours <- cut(F1, breaks = seq(0, 10),

labels = diverging_hcl(10))
par(mfrow = c(1, 2))
scatterplot3d(X, Y, Z, pch = 19, asp = 1,

color = colours)
scatterplot3d(X, Y, Z, pch = 19, asp = 1,

color = colours, angle = 80)

6

Swiss roll iii

−10 −5 0 5 10−
6

−
4

−
2

 0
 2

 4
 6

 8

−1.0
−0.5

 0.0
 0.5

 1.0

X

Y

Z

−10 −5 0 5 10
−

6
−

4
−

2
 0

 2
 4

 6
 8

−1.0

−0.5

 0.0

 0.5

 1.0

X

YZ

7

Swiss roll iv

Let's see if PCA can unroll the Swiss roll
decomp <- prcomp(cbind(X, Y, Z))

plot(decomp$x[,1:2],
col = as.character(colours), pch = 19)

8

Swiss roll v

−5 0 5

−
6

−
4

−
2

0
2

4
6

PC1

P
C

2

9

MNIST data revisited

• To study the nonlinear dimension reduction methods in
this lecture, we will restrict our attention to the digit 2 in
the MNIST dataset.

• The reason: we can think of the different shapes of 2 as
“smooth deformations” of one another.

• This would work for other digits too (e.g. 6, 9, 8), but
not all (e.g. 4, 7).

10

Example i

library(dslabs)
library(tidyverse)

mnist <- read_mnist()

data <- mnist$train$images[mnist$train$labels == 2,]

11

Example ii

par(mfrow = c(1, 2))
With crossing
matrix(data[1,], ncol = 28)[, 28:1] %>%
image(col = gray.colors(12, rev = TRUE),

axes = FALSE, asp = 1)
Without crossing
matrix(data[4,], ncol = 28)[, 28:1] %>%
image(col = gray.colors(12, rev = TRUE),

axes = FALSE, asp = 1)

12

Example iii

13

Example iv

decomp <- prcomp(data)
decomp$x[,1:2] %>%
as.data.frame() %>%
ggplot(aes(PC1, PC2)) +
geom_point(alpha = 0.5) +
theme_minimal()

14

Example v

−1000

0

1000

−1000 0 1000
PC1

P
C

2

15

Example vi

First PC
par(mfrow = c(1, 2))
index_right <- which.max(decomp$x[,1])
matrix(data[index_right,], ncol = 28)[, 28:1] %>%
image(col = gray.colors(12, rev = TRUE),

axes = FALSE, asp = 1)
index_left <- which.min(decomp$x[,1])
matrix(data[index_left,], ncol = 28)[, 28:1] %>%
image(col = gray.colors(12, rev = TRUE),

axes = FALSE, asp = 1)

16

Example vii

17

Example viii

Second PC
par(mfrow = c(1, 2))
index_top <- which.max(decomp$x[,2])
matrix(data[index_top,], ncol = 28)[, 28:1] %>%
image(col = gray.colors(12, rev = TRUE),

axes = FALSE, asp = 1)
index_bottom <- which.min(decomp$x[,2])
matrix(data[index_bottom,], ncol = 28)[, 28:1] %>%
image(col = gray.colors(12, rev = TRUE),

axes = FALSE, asp = 1)

18

Example ix

19

Example x
PC1=−1446 PC1=−906 PC1=−718 PC1=−546 PC1=−415

PC1=−290 PC1=−170 PC1=−57 PC1=89 PC1=242

PC1=409 PC1=597 PC1=773 PC1=983 PC1=1574

20

Example xi

−1000

0

1000

−1000 0 1000
PC1

P
C

2

21

Isomap

22

Isomap

• Let’s look at the algorithm and study each step separately.
Basic algorithm

1. Create a graph G from the data, where each data point is
a node, and two nodes are connected if they are
“neighbours”.

2. Each edge gets a weight corresponding to the Euclidean
distance between the two data points.

3. Create a distance matrix ∆, where the (i, j)-th element is
the length of the shortest path in G between the data
points corresponding to nodes i and j.

4. Perform metric Multidimensional Scaling on ∆ to obtain
the projection onto a lower dimensional subspace.

23

Definition of neighbourhood

• Two ways of defining the neighbours of a point Y:
• For an integer K ≥ 1, we could look at the K-nearest

neighbours, i.e. the K points Y1, . . . , YK that are
closest (in Euclidean distance) to Y.

• For a real number ϵ > 0, we could look at all points
Y1, . . . , Yn(ϵ) whose distance from Y is less than ϵ.

• Note: The first definition guarantees that every point
has neighbours, whereas you could get unconnected
points using the second definition.

• You could also use a hybrid of both approaches where you
take the K-nearest neighbours, but discard neighbours
that are “too far away”.

24

Shortest path distance i

• Once we have our weighted graph G (i.e. nodes represent
data points, edges represent neighbours, weights are
Euclidean distances), we can compute the length of any
path from Yi to Yj by summing the weights of all the
edges along the path.

• We then define a distance function on G by

∆ij = min {Length of path γ | γ is a path from Yi to Yj} .

25

Shortest path distance ii

• There are efficient algorithms for computing this distance
for any weighted graph:

• Dijkstra’s algorithm;
• Floyd–Warshall algorithm.

• For more details about these algorithms, take a course on
graph theory!

26

Multidimensional Scaling

Recall the algorithm for MDS.

Algorithm (MDS)
Input: ∆; Output: X̃

1. Create the matrix D containing the square of the entries
in ∆.

2. Create S by centering both the rows and the columns and
multiplying by −1

2 .
3. Compute the eigenvalue decomposition S = UΛUT .
4. Let X̃ be the matrix containing the first r columns of

Λ1/2UT .

27

Swiss roll i

library(dimRed)

isomap_sr <- embed(cbind(X, Y, Z), "Isomap", knn = 10,
ndim = 2)

2019-11-21 17:24:55: Isomap START

2019-11-21 17:24:55: constructing knn graph

2019-11-21 17:24:55: calculating geodesic distances

28

Swiss roll ii

2019-11-21 17:24:55: Classical Scaling

isomap_sr@data@data %>%
plot(col = as.character(colours), pch = 19)

29

Swiss roll iii

−30 −20 −10 0 10 20

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

1.
5

iso 1

is
o

2

30

Example i

isomap_res <- embed(data, "Isomap", knn = 10,
ndim = 2)

2019-11-21 17:24:55: Isomap START

2019-11-21 17:24:55: constructing knn graph

2019-11-21 17:25:15: calculating geodesic distances

2019-11-21 17:25:28: Classical Scaling

31

Example ii

isomap_res@data %>%
as.data.frame() %>%
ggplot(aes(iso.1, iso.2)) +
geom_point(alpha = 0.5) +
theme_minimal()

32

Example iii

−5000

−2500

0

2500

5000

−4000 0 4000
iso.1

is
o.

2

33

Example iv
ISO1=−6638 ISO1=−4258 ISO1=−3369 ISO1=−2722 ISO1=−2114

ISO1=−1504 ISO1=−818 ISO1=−150 ISO1=548 ISO1=1322

ISO1=2017 ISO1=2762 ISO1=3589 ISO1=4558 ISO1=6831

34

Intuition i

• The reason why Isomap works is because the shortest
path distance approximates the geodesic distance on the
manifold

• “Train tracks distance”
• If we embed the weighted graph in Rp, with each nodes

at its corresponding data point, and each edge having
length equal to the Euclidean distance, we can see the
graph as a scaffold of the manifold.

• As we increase the sample size, the scaffold “converges”
to the actual manifold.

35

Intuition ii

Tenenbaum et al. Science (2000)

36

Further examples i

Figure 1
37

Further examples ii

Figure 2
38

Comments

• Advantages:
• Simple extension of MDS
• Preserves distance relationship on the manifold

• Disadvantages:
• Computing the shortest path distance can be expensive

with many data points
• Doesn’t work well with all manifolds (e.g. it fails when

the underlying manifold has holes or many folds)

39

Locally Linear Embedding

40

Local vs. Global structure

• In Isomap, we estimated pairwise distances by
constraining them to be close to the underlying manifold.

• But we still computed all O(n2) distances…
• LLE instead focuses on local stuctures in the data.
• In particular, it assumes that a linear approximation of

these local structures will give a good approximation of
the global (nonlinear) structure.

41

Preserving local structure

• The motivation for LLE is as follows:
• A given point should be well approximated by a linear

combination of its neighbours.
• We want those linear combinations weights to be

invariant to rotation, scaling, and translation.
• Therefore, the same weights should be used if we

replace the original data with a lower dimensional
representation.

42

Algorithm i

• First, some notation:
• Yi, i = 1, . . . , n are the p-dimensional data points.
• Xi, i = 1, . . . , n are their k-dimensional representation.
• If Yj is a neighbour of Yi, we write j ∈ N (i).
• W is an n × n matrix of weights such that wij = 0 if

Yj is not a neighbour of Yi.
• We also impose a constraint that ∑n

j=1 wij = 1 for all i,
i.e. the rows of W sum to 1.

43

Algorithm ii

LLE Algorithm
Input: Yi ∈ Rp, i = 1, . . . , n.
Output: Xi ∈ Rk, i = 1, . . . , n.

1. Estimate W by minimising the reconstruction error:

Ŵ = arg min
W

n∑
i=1

∥Yi −
n∑

j=1
wijYj∥2.

2. With Ŵ fixed, estimate X1, . . . , Xn by minimising the
embedding cost:

X̂ = arg min
X

n∑
i=1

∥Xi −
n∑

j=1
ŵijXj∥2.

44

Reconstruction error i

• Let Ei(W) = ∥Yi − ∑n
j=1 wijYj∥2.

• Recall that we would like invariance under rotation,
scaling, and translation.

• Let α be a scalar. We have

∥αYi −
n∑

j=1
wijαYj∥2 = α2∥Yi −

n∑
j=1

wijYj∥2,

and therefore the minimiser of Ei(W) is the same after
rescaling all points by α.

45

Reconstruction error ii

• Next, let T be a p × p orthogonal matrix. We have

46

Reconstruction error iii

∥TYi −
n∑

j=1
wijTYj∥2 =

∥∥∥∥∥∥T

Yi −
n∑

j=1
wijYj

∥∥∥∥∥∥
2

=

T

Yi −
n∑

j=1
wijYj

T T

Yi −
n∑

j=1
wijYj


=

Yi −
n∑

j=1
wijYj

T

T T T

Yi −
n∑

j=1
wijYj


=

Yi −
n∑

j=1
wijYj

T Yi −
n∑

j=1
wijYj

 = Ei(W).

47

Reconstruction error iv

• Finally, let µ ∈ Rp. We have

48

Reconstruction error v

∥(Yi − µ) −
n∑

j=1
wij(Yj − µ)∥2

= ∥Yi − µ −
n∑

j=1
wijYj +

n∑
j=1

wijµ∥2

= ∥Yi − µ −
n∑

j=1
wijYj + µ

n∑
j=1

wij∥2

= ∥Yi − µ −
n∑

j=1
wijYj + µ∥2

= ∥Yi −
n∑

j=1
wijYj∥2 = Ei(W).

49

Reconstruction error vi

• In other words, invariance comes from the definition of
reconstruction error and the constraint that weights sum
to 1.

• How to minimise Ei(W)? Assume that the neighbours
of Yi are Y(1), . . . , Y(r). We then have

50

Reconstruction error vii

Ei(W) = ∥Yi −
n∑

j=1
wijYj∥2

= ∥Yi −
r∑

j=1
wi(j)Y(j)∥2

=

∥∥∥∥∥∥
r∑

j=1
wi(j)

(
Yi − Y(j)

)∥∥∥∥∥∥
2

=
r∑

j=1

r∑
k=1

wi(j)wi(k)
(
Yi − Y(j)

)T (
Yi − Y(k)

)
.

51

Reconstruction error viii

• Let G(i) be the matrix whose (j, k)-th entry is equal to(
Yi − Y(j)

)T (
Yi − Y(k)

)
.

• Using the method of Lagrange multipliers, we can
minimise Ei(W) by solving the linear system

Gw = 1

and normalising the weights so they add up to 1.
• If G is singular (or nearly singular), you can add a small

constant to the diagonal to regularise it.

52

Example i

n <- 1000
data_knn <- data[seq_len(n),]

Compute distances
Delta <- dist(data_knn)

Take 5-NN to first obs.
neighbours <- order(Delta[seq_len(n-1)])[1:5]

53

Example ii

main_obs <- data_knn[1,]
nb_data <- data_knn[neighbours,]

54

Example iii
NN 1 NN 2 NN 3

NN 4 NN 5

55

Example iv

Center neighbours around main obs
nb_data_c <- sweep(nb_data, 2, main_obs)
Local cov matrix
Gmat <- tcrossprod(nb_data_c)

Find weights
w_vect <- solve(Gmat, rep(1, 5))
w_vect <- w_vect/sum(w_vect)

56

Example v

Compare original with approx.
approx <- drop(w_vect %*% nb_data)
par(mfrow = c(1, 2))

matrix(main_obs, ncol = 28)[, 28:1] %>%
image(col = gray.colors(12, rev = TRUE),

axes = FALSE, main = "Original", asp = 1)
matrix(approx, ncol = 28)[, 28:1] %>%
image(col = gray.colors(12, rev = TRUE),

axes = FALSE, main = "Approx. (5 NN)", asp = 1)

57

Example vi

Original Approx. (5 NN)

58

Example vii

Original Approx. (25 NN)

59

Embedding cost i

• Let Φ(X) = ∑n
i=1 ∥Xi − ∑n

j=1 wijXj∥2.
• As we did earlier, we can rewrite this:

n∑
i=1

∥Xi −
n∑

j=1
wijXj∥2 =

n∑
i=1

∥∥∥∥∥∥
n∑

j=1
wij (Xi − Xj)

∥∥∥∥∥∥
2

=
n∑

i=1

n∑
j=1

n∑
k=1

wik (Xi − Xj)T (Xi − Xk)

=
n∑

i=1

n∑
j=1

mijXT
i Xj.

60

Embedding cost ii

• Above, mij is the (i, j)-th element of the matrix M ,
where

M = (I − W)T (I − W).

• Key observation: M is sparse (i.e. lots of zeroes),
symmetric, and positive semidefinite.

• If we impose some restrictions on the projections Xi

(i.e. mean zero, identity covariance matrix), we can
minimise Φ(X) subject to these constraints using
Lagrange multipliers.

• The smallest eigenvalue will be zero; we can discard its
corresponding eigenvector.

61

Embedding cost iii

• The eigenvectors corresponding to the next k smallest
eigenvalues give us our matrix X that minimises the
embedding cost.

62

Comments

• Since M is sparse, we can compute these eigenvectors
very efficiently using specialised algorithms.

• Since we obtained the data matrix X as eigenvectors of
M , it may seem that we did a linear dimension reduction.
However, the sparsity of W (and therefore M) is what
gives us our nonlinear dimension reduction.

63

Swiss roll i

lle_sr <- embed(cbind(X, Y, Z), "LLE", knn = 20,
ndim = 2)

finding neighbours
calculating weights
computing coordinates

lle_sr@data@data %>%
plot(col = as.character(colours), pch = 19)

64

Swiss roll ii

−1 0 1 2 3

−
2.

0
−

1.
5

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

LLE1

LL
E

2

65

Example i

lle_res <- embed(data, "LLE", knn = 50,
ndim = 2)

finding neighbours
calculating weights
computing coordinates

66

Example ii

lle_res@data %>%
as.data.frame() %>%
ggplot(aes(LLE1, LLE2)) +
geom_point(alpha = 0.5) +
theme_minimal()

67

Example iii

−5.0

−2.5

0.0

2.5

5.0

−2.5 0.0 2.5 5.0
LLE1

LL
E

2

68

Example iv
ISO1=−4 ISO1=−1 ISO1=−1 ISO1=−1 ISO1=−1

ISO1=0 ISO1=0 ISO1=0 ISO1=0 ISO1=0

ISO1=1 ISO1=1 ISO1=1 ISO1=1 ISO1=5

69

Further comments

• Advantages:
• Preserves local structure
• Less computationally expensive than Isomap

• Disadvantages:
• Less accurate in preserving global structure
• Doesn’t work well with all manifolds (e.g. it fails when

the underlying manifold is nonconvex)

70

	Isomap
	Locally Linear Embedding

