Manifold Learning

Max Turgeon

STAT 4690-Applied Multivariate Analysis

Dimension reduction redux i

» Recall Pearson's approach to PCA: best approximation
of the data by a linear manifold.
» Let's unpack this definition:
= We're looking for a linear subspace of R? of dimension k.
= For a fixed k, we want to minimise the error when
projecting onto the linear subspace.
= We can also identify that subspace with R¥ (e.g. for
visualisation).

Dimension reduction redux

= Manifold learning is a nonlinear approach to dimension
reduction, where:
= We assume the data lies on (or close to) a nonlinear
manifold of dimension k in RP.
= We project the data from the manifold to R*.
= There are two main classes of methods:

= Distance preserving (e.g. Isomap);
= Topology preserving (e.g. Locally linear embedding)

Manifolds—Definition

» Roughly speaking, manifolds of dimension £ are
geometric objects that locally look like R
= Every point on the manifold has an open neighbourhood
that is equivalent to an open ball in R¥.
= Examples in R? include any curve, the
(p — 1)-dimensional sphere, or any linear subspace.
= Some manifolds have boundaries (e.g. a cylinder) or

corners (e.g. a cube).

n <- 1000
F1 <- runif(n, 0, 10)
F2 <- runif(n, -1, 1)

X <- F1 * cos(F1)
Y <- F2
Z <- F1 * sin(F1)

library(scatterplot3d)

library(colorspace)

colours <- cut(F1, breaks = seq(0, 10),
labels = diverging_hcl(10))

par (mfrow = c(1, 2))

scatterplot3d(X, Y, Z, pch = 19, asp = 1,
color = colours)

scatterplot3d(X, Y, Z, pch = 19, asp = 1,
color = colours, angle = 80)

>

: T
8 9 ¥ Z 0 2-v-9-

4

Let's see 1f PCA can unroll the Swiss Toll

decomp <- prcomp(cbind(X, Y, Z))

plot(decomp$x[,1:2],

col = as.character(colours), pch = 19)

PC2

-2

-4

-6

*cmsan -/

-5]

MNIST data revisited

= To study the nonlinear dimension reduction methods in
this lecture, we will restrict our attention to the digit 2 in
the MNIST dataset.
= The reason: we can think of the different shapes of 2 as
“smooth deformations” of one another.
= This would work for other digits too (e.g. 6, 9, 8), but
not all (e.g. 4, 7).

10

library(dslabs)
library(tidyverse)

mnist <- read_mnist()

data <- mnist$train$images[mnist$train$labels == 2,]

11

par (mfrow = c(1, 2))
With crossing
matrix(datall,], ncol = 28)[, 28:1] %>%
image(col = gray.colors(12, rev = TRUE),
axes = FALSE, asp = 1)
Without crossing
matrix(datal4,], ncol = 28)[, 28:11 %>%
image(col = gray.colors(12, rev = TRUE),
axes = FALSE, asp = 1)

12

Example iii

13

decomp <- prcomp(data)

decomp$x[,1:2] %>%
as.data.frame() %>/
ggplot(aes(PC1, PC2)) +
geom_point(alpha = 0.5) +

theme_minimal ()

14

1000

-1000

-1000 0 1000

15

First PC
par (mfrow = c(1, 2))
index_right <- which.max(decomp$x[,1])
matrix(datalindex_right,], ncol = 28)[, 28:1] %>%
image(col = gray.colors(12, rev = TRUE),
axes = FALSE, asp = 1)
index_left <- which.min(decomp$x[,1])
matrix(datal[index left,], ncol = 28)[, 28:1] %>%
image(col = gray.colors(12, rev = TRUE),
axes = FALSE, asp = 1)

16

Second PC
par (mfrow = c(1, 2))
index_top <- which.max(decomp$x[,2])
matrix(datal[index_top,], ncol = 28)[, 28:1] %>/

image(col = gray.colors(12, rev = TRUE),

axes = FALSE, asp = 1)

index_bottom <- which.min(decomp$x[,2])
matrix(data[index bottom,], ncol = 28)[, 28:1] %>%

image(col = gray.colors(12, rev = TRUE),
axes = FALSE, asp = 1)

18

Example x

PC1=-1446

PC1=-290

PC1=409

PC1=-906

PC1=-170

PC1=597

PC1=-718

PC1=773

2 a a

PC1=-546

PC1=89

=

PC1=983

o0

PC1=-415

PC1=242

=

PC1=1574

20

1000

3
R
§ :
] 3 ¥y X
[] (i .o - & 3
e 5 s .
s woed \J ne
* A
& 2 ok
LR, ~ o
:
-1000 -
-1000) 1000

21

Isomap

22

= Let's look at the algorithm and study each step separately.

Basic algorithm

1. Create a graph G from the data, where each data point is
a node, and two nodes are connected if they are
“neighbours”.

2. Each edge gets a weight corresponding to the Euclidean
distance between the two data points.

3. Create a distance matrix A, where the (7, j)-th element is
the length of the shortest path in G between the data
points corresponding to nodes 7 and j.

4. Perform metric Multidimensional Scaling on A to obtain
the projection onto a lower dimensional subspace.

23

Definition of neighbourhood

= Two ways of defining the neighbours of a point Y:
= For an integer K > 1, we could look at the K-nearest
neighbours, i.e. the K points Y1,..., Y that are
closest (in Euclidean distance) to Y.
= For a real number ¢ > 0, we could look at all points
Yi,..., Y, whose distance from Y is less than e.
= Note: The first definition guarantees that every point
has neighbours, whereas you could get unconnected
points using the second definition.
= You could also use a hybrid of both approaches where you
take the K-nearest neighbours, but discard neighbours

that are “too far away".

24

Shortest path distance i

= Once we have our weighted graph G (i.e. nodes represent
data points, edges represent neighbours, weights are
Euclidean distances), we can compute the length of any
path from Y; to Y; by summing the weights of all the
edges along the path.

= We then define a distance function on G by

A;; = min {Length of path ~ | 7 is a path from Y, to Y} .

25

Shortest path distance ii

= There are efficient algorithms for computing this distance
for any weighted graph:
= Dijkstra’s algorithm;
= Floyd—Warshall algorithm.
= For more details about these algorithms, take a course on
graph theory!

26

Multidimensional Scaling

Recall the algorithm for MDS.

Algorithm (MDS)
Input: A; Output: X

1.

Create the matrix D containing the square of the entries
in A.

Create S by centering both the rows and the columns and
multiplying by —%.

Compute the eigenvalue decomposition S = UAUT.

Let X be the matrix containing the first r columns of
AT,

27

library(dimRed)

isomap_sr <- embed(cbind(X, Y, Z), "Isomap", knn = 10,
ndim = 2)

2019-11-21 17:24:55: Isomap START
2019-11-21 17:24:55: constructing knn graph

2019-11-21 17:24:55: calculating geodesic distances

28

2019-11-21 17:24:55: Classical Scaling

isomap_sr@data@data %>%
plot(col = as.character(colours), pch = 19)

29

iso 2

-0.5 0.0 0.5 1.0 b5}

-1.0

P~ LA

-10 0 10

20

30

embed(data, "Isomap", knn = 10,

isomap_res <-

2019-11-21

2019-11-21

2019-11-21

2019-11-21

ndim

17:24:55:

17:24:55:

17:25:15:

17:25:28:

= 2)

Isomap START

constructing knn graph

calculating geodesic distances

Classical Scaling

31

isomap _res@data %>Y%
as.data.frame() %>’
ggplot(aes(iso.1, is0.2)) +
geom_point(alpha = 0.5) +

theme_minimal ()

32

Example

5000

2500

is0.2

-5000

-4000 0 4000

33

1S01=-6638

1S01=-1504

1S01=2017

1S01=-4258

1S01=-818

1S01=2762

1S01=-3369

1S01=3589

1S01=-2722

1S01=548

<

1S01=4558

o

1S01=-2114

1S01=1322

1S01=6831

34

= The reason why Isomap works is because the shortest
path distance approximates the geodesic distance on the
manifold

= “Train tracks distance”

= |If we embed the weighted graph in RP, with each nodes
at its corresponding data point, and each edge having
length equal to the Euclidean distance, we can see the
graph as a scaffold of the manifold.

= As we increase the sample size, the scaffold “converges”

to the actual manifold.

35

Intuition

Tenenbaum et al. Science (2000)

36

Further examples i

|

Left-right pose

3 Lighting direction

asod umop-dn

37

Figure 1

()]
2
o
€
©
X
Q
-
Q
A=
pras
-
-
Ll

»

Bottom loop articulation

zz!
N ZZ

zz

N

uone|nolJe yote dog

»

38

Figure 2

Comments

» Advantages:
= Simple extension of MDS
= Preserves distance relationship on the manifold
» Disadvantages:
= Computing the shortest path distance can be expensive
with many data points
= Doesn’t work well with all manifolds (e.g. it fails when

the underlying manifold has holes or many folds)

39

Locally Linear Embedding

40

Local vs. Global structure

= In Isomap, we estimated pairwise distances by
constraining them to be close to the underlying manifold.
= But we still computed all O(n?) distances..
» LLE instead focuses on local stuctures in the data.
» |n particular, it assumes that a linear approximation of
these local structures will give a good approximation of
the global (nonlinear) structure.

41

Preserving local structure

= The motivation for LLE is as follows:

= A given point should be well approximated by a linear
combination of its neighbours.

= We want those linear combinations weights to be
invariant to rotation, scaling, and translation.

= Therefore, the same weights should be used if we
replace the original data with a lower dimensional
representation.

42

Algorithm i

= First, some notation:

= Y, i=1,...,n are the p-dimensional data points.

= X,,i=1,...,n are their k-dimensional representation.

= IfY; is a neighbour of Y;, we write j € N (i).

» W is an n x n matrix of weights such that w;; = 0 if
Y is not a neighbour of Y;.

= We also impose a constraint that 3°7_; w;; = 1 for all 4,
i.e. the rows of W sum to 1.

43

Algorithm ii

LLE Algorithm
Input: Y; e RP. s =1,...,n.
Output: X; e R*¥ i=1,...,n.
1. Estimate W by minimising the reconstruction error:
W= argminz Y — ZwinjHQ.
W =1 j=1
2. With W fixed, estimate X, ..., X,, by minimising the
embedding cost:
X

i=1 j=1

44

Reconstruction error i

- Let &(W) = [[Yi — X0y wy Y |12

» Recall that we would like invariance under rotation,
scaling, and translation.

» Let a be a scalar. We have

n n
laY; = > wiaY||* = oY = > wi Y51

j=1 j=1

and therefore the minimiser of &; (V) is the same after
rescaling all points by a.

45

Reconstruction error

= Next, let 7" be a p X p orthogonal matrix. We have

46

Reconstruction error iii

2

ITY: =Y wi,;TY,|* =

=1 j=1

(e o)) (e £om)

T
7=1

J=1

T
7=1 7j=1

47

Reconstruction error iv

= Finally, let © € RP. We have

48

Reconstruction error v

wa ||2
=Yi—p— Zwinj + sz‘jqu
=1Yi—p =Y wyY;+pd wgyl?
= =1

= IY: —p = Y w4 pff?

Jj=1

= Y: = Y wi; Y,|? = &(W).

J=1

49

Reconstruction error vi

= |In other words, invariance comes from the definition of
reconstruction error and the constraint that weights sum
to 1.

= How to minimise &;(1V)? Assume that the neighbours
of Y; are Y(),...,Y(). We then have

50

Reconstruction error vii

EW) =Y = > wyY,|?
7=1
= IY: = > wi) Ypll®
j=1
2

i;wi(j) (Yz' - Y(j))
=

= Z Z Wi5) Wi(k) (Yz' - Y(j))T (Yz‘ - Y(k)) :

j=1k=1

51

Reconstruction error viii

= Let G(i) be the matrix whose (7, k)-th entry is equal to

T
(Yi-Y@) (Yi-Yw).
» Using the method of Lagrange multipliers, we can
minimise &; (W) by solving the linear system

Gw =1

and normalising the weights so they add up to 1.
» If G is singular (or nearly singular), you can add a small
constant to the diagonal to regularise it.

52

n <- 1000
data_knn <- datal[seq_len(n),]

Compute distances
Delta <- dist(data_knn)

Take 5-NN to first obs.
neighbours <- order(Delta[seq_len(n-1)]) [1:5]

53

main_obs <- data knn[1,]

nb_data <- data_knn[neighbours,]

54

NN 1 NN 2 NN 3
-I'_':;._
NN 4 NN5

55

Center neighbours around main obs
nb_data_c <- sweep(nb_data, 2, main_obs)
Local cov matriz

Gmat <- tcrossprod(nb_data_c)

Find wetights
w_vect <- solve(Gmat, rep(l, 5))

w_vect <- w_vect/sum(w_vect)

56

Compare original with approzx.
approx <- drop(w_vect %%’ nb_data)
par (mfrow = c(1, 2))

matrix(main obs, ncol = 28) [, 28:1] %>%
image(col = gray.colors(12, rev = TRUE),
axes = FALSE, main = "Original", asp = 1)
matrix(approx, ncol = 28) [, 28:1] %>%
image(col = gray.colors(12, rev = TRUE),
axes = FALSE, main = "Approx. (5 NN)", asp = 1.

57

Original Approx. (5 NN)

58

Original Approx. (25 NN)

59

Embedding cost i

= Let &(X) = X0, [1Xi — X5 wi X
= As we did earlier, we can rewrite this:

M:
M:

Z IX: — Z wi X5 * =

wi; (X — X))

@
I
i,

1

zn: wir (X — X;)" (X; = Xy)

1 k=

.
Il

Il
NgE
Il

o~
HM:
[§

<
S

T
ml]XZ Xj.

I

@
Il

o,
<
Il

o,

60

Embedding cost ii

= Above, m;; is the (i, j)-th element of the matrix M,
where
M=(I-W)TI-w).

» Key observation: M is sparse (i.e. lots of zeroes),
symmetric, and positive semidefinite.

= If we impose some restrictions on the projections X;
(i.e. mean zero, identity covariance matrix), we can
minimise ®(X) subject to these constraints using
Lagrange multipliers.

» The smallest eigenvalue will be zero; we can discard its
corresponding eigenvector.

61

Embedding cost iii

» The eigenvectors corresponding to the next k smallest
eigenvalues give us our matrix X that minimises the
embedding cost.

62

Comments

= Since M is sparse, we can compute these eigenvectors
very efficiently using specialised algorithms.

= Since we obtained the data matrix X as eigenvectors of
M, it may seem that we did a linear dimension reduction.
However, the sparsity of W (and therefore M) is what
gives us our nonlinear dimension reduction.

63

1lle sr <- embed(cbind(X, Y, Z), "LLE", knn = 20,
ndim = 2)

finding neighbours
calculating weights

computing coordinates

lle_sr@data@data %>%
plot(col = as.character(colours), pch = 19)

64

e SN SRS RS 0

LLE2

=3
1

/

=f, 0 1 2 3

65

lle res <- embed(data, "LLE", knn = 50,
ndim = 2)

finding neighbours
calculating weights

computing coordinates

66

lle res@data %>%
as.data.frame() %>’
ggplot(aes(LLE1, LLE2)) +
geom_point(alpha = 0.5) +

theme_minimal ()

67

amn

25

00

LLE1

68

1S01=-4

1S01=0

1S01=1

1S01=-1 1S01=-1
1S01=0 1S01=0
1S01=1 1S01=1

1S01=0 1S01=0
1S01=1 1S01=5
e

69

Further comments

= Advantages:

= Preserves local structure

= Less computationally expensive than Isomap
» Disadvantages:

= Less accurate in preserving global structure
= Doesn't work well with all manifolds (e.g. it fails when
the underlying manifold is nonconvex)

70

	Isomap
	Locally Linear Embedding

