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Quick Overview

What do we mean by Analysis of Variance?

• ANOVA is a collection of statistical models that aim to
analyze and understand the differences in means between
different subgroups of the data.

• As such, it can be seen as a generalisation of the t-test
(or of Hotelling’s T 2).

• Note that there could be multiple, overlapping ways of
defining the subgroups (e.g multiway ANOVA)

• It also provides a framework for hypothesis testing.
• Which can be recovered from a suitable regression

model.
• Most importantly, ANOVA provides a framework for

understanding and comparing the various sources of
variation in the data. 2



Review of univariate ANOVA i

• Assume the data comes from g populations:

X11, . . . , X1n1
... . . . ...

Xg1, . . . , Xgng

• Assume that Xℓ1, . . . , Xℓnℓ
is a random sample from

N(µℓ, σ2), for ℓ = 1, . . . , g.
• Homoscedasticity

• We are interested in testing the hypothesis that
µ1 = . . . = µg.
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Review of univariate ANOVA ii

• Reparametrisation: We will write the mean µℓ = µ + τℓ

as a sum of an overall component µ (i.e. shared by all
populations) and a population-specific component τℓ.

• Our hypothesis can now be rewritten as τℓ = 0, for all ℓ.
• We can write our observations as

Xℓi = µ + τℓ + εℓi,

where εℓi ∼ N(0, σ2).
• Identifiability: We need to assume ∑g

ℓ=1 τℓ = 0,
otherwise there are infinitely many models that lead to
the same data-generating mechanism.

4



Review of univariate ANOVA iii

• Sample statistics: Set n = ∑g
ℓ=1 nℓ.

• Overall sample mean: X̄ = 1
n

∑g
ℓ=1

∑nℓ
i=1 Xℓi.

• Population-specific sample mean: X̄ℓ = 1
nℓ

∑nℓ
i=1 Xℓi.

• We get the following decomposition:(
Xℓi − X̄

)
=
(
X̄ℓ − X̄

)
+
(
Xℓi − X̄ℓ

)
.

• Squaring the left-hand side and summing over both ℓ and
i, we get

g∑
ℓ=1

nℓ∑
i=1

(
Xℓi − X̄

)2
=

g∑
ℓ=1

nℓ

(
X̄ℓ − X̄

)2
+

g∑
ℓ=1

nℓ∑
i=1

(
Xℓi − X̄ℓ

)2
.
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Review of univariate ANOVA iv

• This is typically summarised as SST = SSM + SSR:
• The total sum of squares:

SST =
∑g

ℓ=1
∑nℓ

i=1

(
Xℓi − X̄

)2

• The model (or treatment) sum of squares:
SSM =

∑g
ℓ=1 nℓ

(
X̄ℓ − X̄

)2

• The residual sum of squares:
SSR =

∑g
ℓ=1

∑nℓ
i=1

(
Xℓi − X̄ℓ

)2
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Review of univariate ANOVA v

• Yet another representation is the ANOVA table:

Source of Variation Sum of Squares Degrees of freedom
Model SSM g − 1
Residual SSR n − g

Total SST n − 1

• The usual test statistic used for testing τℓ = 0 for all ℓ is

F = SSM/(g − 1)
SSR/(n − g)

∼ F (g − 1, n − g).
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Review of univariate ANOVA vi

• We could also instead reject the null hypothesis for small
values of

SSR

SSR + SSM

= SSR

SST

.

This is the test statistic that we will generalize to the
multivariate setting.
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Multivariate ANOVA i

• The setting is similar: Assume the data comes from g

populations:
Y11, . . . , Y1n1

... . . . ...
Yg1, . . . , Ygng

• Assume that Yℓ1, . . . , Yℓnℓ
is a random sample from

Np(µℓ, Σ), for ℓ = 1, . . . , g.
• Homoscedasticity is key here again.

• We are again interested in testing the hypothesis that
µ1 = . . . = µg.
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Multivariate ANOVA ii

• Reparametrisation: We will write the mean as µℓ = µ + τℓ

• Yℓi = µ + τℓ + Eℓi, where Eℓi ∼ Np(0, Σ).

• Identifiability: We need to assume ∑g
ℓ=1 τℓ = 0.

• Instead of a decomposition of the sum of squares, we get
a decomposition of the outer product:

(Yℓi − Ȳ)(Yℓi − Ȳ)T .
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Multivariate ANOVA iii

• The decomposition is given as

g∑
ℓ=1

nℓ∑
i=1

(Yℓi − Ȳ)(Yℓi − Ȳ)T =
g∑

ℓ=1
nℓ(Ȳℓ − Ȳ)(Ȳℓ − Ȳ)T

+
g∑

ℓ=1

nℓ∑
i=1

(Yℓi − Ȳℓ)(Yℓi − Ȳℓ)T .

• Between sum of squares and cross products matrix:
B = ∑g

ℓ=1 nℓ(Ȳℓ − Ȳ)(Ȳℓ − Ȳ)T .

• Within sum of squares and cross products matrix:
W = ∑g

ℓ=1
∑nℓ

i=1(Yℓi − Ȳℓ)(Yℓi − Ȳℓ)T .
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Multivariate ANOVA iv

• Note that W = ∑g
ℓ=1(nℓ − 1)Sℓ.

• Similarly as above, we have a MANOVA table:

Source of Variation Sum of Squares Degrees of freedom
Model B g − 1
Residual W n − g

Total B + W n − 1

• To test the null hypothesis H0 : τℓ = 0 for all
ℓ = 1, . . . , g, we will use Wilk’s lambda as our test
statistic:

Λ = |W |
|B + W |

.
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Multivariate ANOVA v

• There is actually no closed-form for the null distribution
of Λ, so we will use Bartlett’s approximation:

−
(

n − 1 − 1
2

(p + g)
)

log Λ ≈ χ2((g − 1)p).

• In particular, if we let c = χ2
α((n − 1)p) be the critical

value, we reject the null hypothesis if

Λ ≤ exp
(

−c

n − 1 − 0.5(p + g)

)
.
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Example i

## Example on producing plastic film
## from Krzanowski (1998, p. 381)
tear <- c(6.5, 6.2, 5.8, 6.5, 6.5, 6.9, 7.2,

6.9, 6.1, 6.3, 6.7, 6.6, 7.2, 7.1,
6.8, 7.1, 7.0, 7.2, 7.5, 7.6)

gloss <- c(9.5, 9.9, 9.6, 9.6, 9.2, 9.1, 10.0,
9.9, 9.5, 9.4, 9.1, 9.3, 8.3, 8.4,
8.5, 9.2, 8.8, 9.7, 10.1, 9.2)

opacity <- c(4.4, 6.4, 3.0, 4.1, 0.8, 5.7, 2.0,
3.9, 1.9, 5.7, 2.8, 4.1, 3.8, 1.6,
3.4, 8.4, 5.2, 6.9, 2.7, 1.9)
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Example ii

Y <- cbind(tear, gloss, opacity)
Y_low <- Y[1:10,]
Y_high <- Y[11:20,]
n <- nrow(Y); p <- ncol(Y); g <- 2

W <- (nrow(Y_low) - 1)*cov(Y_low) +
(nrow(Y_high) - 1)*cov(Y_high)

B <- (n-1)*cov(Y) - W
(Lambda <- det(W)/det(W+B))

## [1] 0.4136192
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Example iii

transf_lambda <- -(n - 1 - 0.5*(p + g))*log(Lambda)
transf_lambda > qchisq(0.95, p*(g-1))

## [1] TRUE

# Or if you want a p-value
pchisq(transf_lambda, p*(g-1), lower.tail = FALSE)

## [1] 0.002227356
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Example iv

# R has a function for MANOVA
# But first, create factor variable
rate <- gl(g, 10, labels = c("Low", "High"))

fit <- manova(Y ~ rate)
summary_tbl <- broom::tidy(fit, test = "Wilks")
# Or you can use the summary function

knitr::kable(summary_tbl, digits = 3)
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Example v

term df wilks statistic num.df den.df p.value

rate 1 0.414 7.561 3 16 0.002
Residuals 18 - - - - -
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Example vi

# Check residuals for evidence of normality
library(tidyverse)
fit %>%

residuals %>%
as.data.frame() %>%
gather(variable, residual) %>%
ggplot(aes(sample = residual)) +
stat_qq() + stat_qq_line() +
facet_grid(. ~ variable) +
theme_minimal()
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Example vii
gloss opacity tear
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Comments i

• The output from R shows a different approximation to the
Wilk’s lambda distribution, due to Rao.

• There are actually 4 tests available in R (we will discuss
them in the next lecture):

• Wilk’s lambda;
• Pillai-Bartlett;
• Hotelling-Lawley;
• Roy’s Largest Root.
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Comments ii

• Since we only had two groups in the above example, we
were only comparing two means.

• Wilk’s lambda was therefore equivalent to Hotelling’s
T 2.

• But of course MANOVA is much more general.
• We can assess the normality assumption by looking at the

residuals Eℓi = Yℓi − Ȳℓ.
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Testing for Equality of Covariance Matrices i

• Last lecture, when comparing two multivariate means,
and again today, we talked about homoscedasticity as
an important assumption.

• This is a testable assumption, i.e. we can devise a
corresponding hypothesis test.

• Our null hypothesis: H0 : Σ1 = · · · = Σg, where Σℓ is the
covariance matrix for population ℓ.

• In this course, we will discuss Box’s M-test
• This test is based on a comparison of generalized

variances.
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Testing for Equality of Covariance Matrices ii

• Under the normality assumption, the likelihood ratio
statistic for the null hypothesis above is

Λ =
g∏

ℓ=1

(
|Sℓ|

|Spool|

)(nℓ−1)/2

.

• Here, Sℓ is the sample covariance for population ℓ, and
Spool is the pooled estimator:

Spool = 1
n − 1

( g∑
ℓ=1

(nℓ − 1)Sℓ

)
= 1

n − 1
W.
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Testing for Equality of Covariance Matrices iii

• Box’s M-statistic is defined as

M = −2 log Λ.

• The general theory of Likelihood Ratio Tests tells us that
M ≈ χ2(ν) for an appropriate value ν > 0.
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Testing for Equality of Covariance Matrices iv

Box’s Test for Equality of Covariance Matrices
Set

u =
( g∑

ℓ=1

1
nℓ − 1

− 1
n − g

)(
2p2 + 3p − 1

6(p + 1)(g − 1)

)
.

Then C = (1 − u)M has approximate χ2(ν) distribution,
where

ν = 1
2

p(p + 1)(g − 1).
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Comments about Box’s M-test

• Good approximation if nℓ > 20 for all ℓ and both g, p ≤ 5.
• Not very realistic for modern datasets…

• There is another approximation using the F distribution
when the conditions above are not met.

• See Rencher (1998), Section 4.3.
• However, Box’s M-test is especially sensitive to

departures from normality.
• In general, one can also use graphical tests.
• Key result: With large and approximately equal sample

sizes, MANOVA is relatively robust to heteroscedasticity.
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Example (cont’d) i

S_low <- cov(Y_low)
S_high <- cov(Y_high)
S_pool <- W/(n - 1)

c("pool" = log(det(S_pool)),
"low" = log(det(S_low)),
"high" = log(det(S_high)))

## pool low high
## -2.370911 -2.949096 -2.013061
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Example (cont’d) ii

library(heplots)
(boxm_res <- boxM(Y, rate))

##
## Box's M-test for Homogeneity of Covariance Matrices
##
## data: Y
## Chi-Sq (approx.) = 4.0175, df = 6, p-value = 0.6743
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Example (cont’d) iii

# You can plot the log generalized variances
# The plot function adds 95% CI
plot(boxm_res)
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Example (cont’d) iv
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Example (cont’d) v

# Finally you can also plot the ellipses
# as a way to compare the covariances
covEllipses(Y, rate, center = TRUE,

label.pos = 'bottom')
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Example (cont’d) vi
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Example (cont’d) vii

# Or all pairwise comparisons together
covEllipses(Y, rate, center = TRUE,

label.pos = 'bottom',
variables = 1:3)
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Example (cont’d) viii
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Strategy for Multivariate Comparison of Treatments

1. Try to identify outliers.
• This should be done graphically at first.
• Once the model is fitted, you can also look at influence

measures.
2. Perform a multivariate test of hypothesis.
3. If there is evidence of a multivariate difference, calculate

Bonferroni confidence intervals and investigate
component-wise differences.

• The projection of the confidence region onto each
variable generally leads to confidence intervals that are
too large.
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