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What do we mean by Analysis of Variance?

= ANOVA is a collection of statistical models that aim to
analyze and understand the differences in means between
different subgroups of the data.
= As such, it can be seen as a generalisation of the t-test
(or of Hotelling's 7).
= Note that there could be multiple, overlapping ways of
defining the subgroups (e.g multiway ANOVA)
» It also provides a framework for hypothesis testing.
= Which can be recovered from a suitable regression
model.
= Most importantly, ANOVA provides a framework for
understanding and comparing the various sources of
variation in the data.



Review of univariate ANOVA i

= Assume the data comes from ¢ populations:

Xlla 000 g X1n1
gty ooy gm
= Assume that Xy,..., Xy,, is a random sample from

N(ue,0?), fort =1,...,g.
= Homoscedasticity
= We are interested in testing the hypothesis that
W = oo 0 = e



Review of univariate ANOVA ii

» Reparametrisation: We will write the mean iy = p+ 7
as a sum of an overall component i (i.e. shared by all
populations) and a population-specific component 7;.

= Our hypothesis can now be rewritten as 7, = 0, for all /.

= We can write our observations as
Xoi = p+ 70+ €4iy

where g4, ~ N(0, 0?).

= ldentifiability: We need to assume .7 _; 7y = 0,
otherwise there are infinitely many models that lead to
the same data-generating mechanism.



Review of univariate ANOVA iii

» Sample statistics: Set n = >9_, ny.
= Overall sample mean: X = 2377 S X

= Population-specific sample mean: X, = n% Yot Xei

= We get the following decomposition:
(e X) = (X = X) + (Xu— X0).

» Squaring the left-hand side and summing over both ¢ and

1, we get
Z Y (Xfi = X>2 = an (Xe = X)2+Zg:§: (Xgi — Xg)Q.
=Ll =1 ¢=11i=1



Review of univariate ANOVA iv

= This is typically summarised as SS; = SSy + SSk:
= The total sum of squares:
_\2
St = X4, T (Xu — X)
= The model (or treatment) sum of squares:
_ N2
SSu =S4y ne (Xe - X)
= The residual sum of squares:
_\2
SSr=>9_1Y:4 (X&' = Xe)



Review of univariate ANOVA v

= Yet another representation is the ANOVA table:

Source of Variation | Sum of Squares Degrees of freedom
Model SSu g—1
Residual SSg n—g
Total SSt n—1

= The usual test statistic used for testing 7, = 0 for all ¢ is

_ S5u/(g=1)
F—mwF(g—l,n—g).



Review of univariate ANOVA vi

» We could also instead reject the null hypothesis for small

values of
SSkr SSk

Soma 55, oo

This is the test statistic that we will generalize to the
multivariate setting.



Multivariate ANOVA i

» The setting is similar: Assume the data comes from g

populations:
Ylla ©coog Y1n1
Weily cooy g,
= Assume that Yyi,..., Yy, is a random sample from

Ny(pe, 2), for £ =1,...,9.
= Homoscedasticity is key here again.
» We are again interested in testing the hypothesis that
WE = oo 0 = e



Multivariate ANOVA ii

» Reparametrisation: We will write the mean as iy = p+ 7
» Yy = p+ 1+ By, where Ey; ~ Np(0,%).
= Identifiability: We need to assume >7_; 7, = 0.

= Instead of a decomposition of the sum of squares, we get
a decomposition of the outer product:

(Y —Y) (Y —Y)T.
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Multivariate ANOVA iii

» The decomposition is given as

g nyg g
Y Yu—Y) (Yo — => (Y, - Y)Y, - Y)"
/=1 1i=1 0,
ng

=il
g -
3> (Yo — Yo) (Yo — Yo"

{=1i=1

= Between sum of squares and cross products matrix:
B=Y9_n(Y, - Y)Y, - Y.

= Within sum of squares and cross products matrix:
W =39 5% (Ya—Yo)(Yu — Yo)T.
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Multivariate ANOVA iv

= Note that W =>7_,(n, — 1)S,.
= Similarly as above, we have a MANOVA table:

Source of Variation | Sum of Squares Degrees of freedom
Model B g—1
Residual |74 n—g
Total B+ W n—1
= To test the null hypothesis Hy : 7, = 0 for all
¢=1,...,q, we will use Wilk's lambda as our test
statistic:
W]

=B
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Multivariate ANOVA v

= There is actually no closed-form for the null distribution
of A, so we will use Bartlett's approximation:

—(n—l—;@+90k%A%XW@—lm)

= In particular, if we let ¢ = x2((n — 1)p) be the critical
value, we reject the null hypothesis if

A<e ¢
X .
=P\ 1050+ g)
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## Example on producing plastic film
## from Krzanowski (1998, p. 381)
tear <- c(6.5, 6.2, 5.8, 6.5, 6.5, 6.9, 7.2,
6.9, 6.1, 6.3, 6.7, 6.6, 7.2, 7.1,
6.8, 7.1, 7.0, 7.2, 7.5, 7.6)
gloss <- c(9.5, 9.9, 9.6, 9.6, 9.2, 9.1, 10.0,
9.9, 9.5, 9.4, 9.1, 9.3, 8.3, 8.4,
8.5, 9.2, 8.8, 9.7, 10.1, 9.2)
opacity <- c(4.4, 6.4, 3.0, 4.1, 0.8, 5.7, 2.0,
3.9, 1.9, 5.7, 2.8, 4.1, 3.8, 1.6,
3.4, 8.4, 5.2, 6.9, 2.7, 1.9)
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Y <- cbind(tear, gloss, opacity)

Y low <- Y[1:10,]

Y high <- Y[11:20,]

n <- nrow(Y); p <- ncol(Y); g <- 2

W <= (nrow(Y_low) - 1)*cov(Y_low) +
(nrow(Y_high) - 1)*cov(Y_high)

B <- (n-1)*cov(Y) - W
(Lambda <- det(W)/det (W+B))

## [1] 0.4136192
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transf lambda <- -(n - 1 - 0.5*%(p + g))*log(Lambda)
transf lambda > qchisq(0.95, p*(g-1))

## [1] TRUE

# Or 1f you want a p-value
pchisq(transf lambda, p*(g-1), lower.tail = FALSE)

## [1] 0.002227356
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# R has a function for MANOVA
# But first, create factor variable
rate <- gl(g, 10, labels = c("Low", "High"))

fit <- manova(Y ~ rate)
summary_tbl <- broom::tidy(fit, test = "Wilks")

# Or you can use the summary function

knitr: :kable(summary tbl, digits = 3)
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term df  wilks statistic num.df den.df p.value
rate 1 0414 7.561 3 16 0.002
Residuals 18 - - - - -
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# Check residuals for evidence of normality
library(tidyverse)
fit %>%
residuals %>%
as.data.frame() %>/
gather (variable, residual) %>
ggplot (aes(sample = residual)) +
stat_qq() + stat_qq_line() +
facet_grid(. ~ variable) +

theme_minimal ()

19



gloss opacity tear

25
.
.
© .e
=1
£ oo )
8
<
-25
-2 -1 0 1 2 -2 -1 0 1 2

20



Comments i

» The output from R shows a different approximation to the
Wilk's lambda distribution, due to Rao.
= There are actually 4 tests available in R (we will discuss
them in the next lecture):
= Wilk's lambda;
= Pillai-Bartlett;
= Hotelling-Lawley;
= Roy’s Largest Root.
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Comments ii

= Since we only had two groups in the above example, we

were only comparing two means.
Wilk's lambda was therefore equivalent to Hotelling's

T2
= But of course MANOVA is much more general.

= We can assess the normality assumption by looking at the

residuals E;; = Y — Y.
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Testing for Equality of Covariance Matrices i

» Last lecture, when comparing two multivariate means,
and again today, we talked about homoscedasticity as
an important assumption.

» This is a testable assumption, i.e. we can devise a
corresponding hypothesis test.

= Our null hypothesis: Hj : ¥y = --- = X, where 3, is the
covariance matrix for population /.

= In this course, we will discuss Box’s M-test

= This test is based on a comparison of generalized
variances.
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Testing for Equality of Covariance Matrices ii

» Under the normality assumption, the likelihood ratio
statistic for the null hypothesis above is

ﬁ( ‘Sé‘ )(W-U/Q
=1 \|Spoot|

= Here, S, is the sample covariance for population ¢, and

Spool 1S the pooled estimator:

1 g 1
Spool = ﬁ Z(ng - 1)5[ = Ww.

— n—1
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Testing for Equality of Covariance Matrices iii

= Box's M-statistic is defined as
M = —2logA.

= The general theory of Likelihood Ratio Tests tells us that
M =~ x*(v) for an appropriate value v > 0.
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Testing for Equality of Covariance Matrices iv

Box’s Test for Equality of Covariance Matrices

Set
g1 1 2p° +3p—1 )
u= — .
(zg ne—1 n—9> (6(p+ D(g—1)

Then C' = (1 — u)M has approximate x?(v) distribution,

where

v = 5plp+1)(g - 1)
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Comments about Box’s M-test

» Good approximation if n, > 20 for all £ and both ¢g,p < 5.
= Not very realistic for modern datasets...
= There is another approximation using the F' distribution
when the conditions above are not met.
= See Rencher (1998), Section 4.3.
= However, Box's M-test is especially sensitive to
departures from normality.
= In general, one can also use graphical tests.
» Key result: With large and approximately equal sample
sizes, MANOVA is relatively robust to heteroscedasticity.

27



Example (cont’'d) i

S low <- cov(Y_low)
S_high <- cov(Y_high)
S_pool <= W/(n - 1)

c("pool" = log(det(S_pool)),

"low" = log(det(S_low)),
"high" = log(det(S_high)))

#it pool low high
## -2.370911 -2.949096 -2.013061
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Example (cont’d) ii

library(heplots)
(boxm_res <- boxM(Y, rate))

##

## Box's M-test for Homogeneity of Covariance Matrice:
##

## data: Y

## Chi-Sq (approx.) = 4.0175, df = 6, p-value = 0.6743
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Example (cont’d) iii

# You can plot the log generalized wvariances
# The plot function adds 95J CI
plot(boxm_res)
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Example (cont’d) iv

pooled } - :
High } A :
Low ; ° :
T ; ‘ ‘ |
—4 - 5

-1

log determinant
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Example (cont’d) v

# Finally you can also plot the ellipses

# as a way to compare the covariances

covEllipses(Y, rate, center = TRUE,
label.pos = 'bottom')
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Example (cont’d) vi
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gloss
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1
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Example (cont’d) vii

# Or all pairwise comparisons together
covEllipses(Y, rate, center = TRUE,
label.pos = 'bottom',

variables = 1:3)
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Strategy for Multivariate Comparison of Treatments

1. Try to identify outliers.

= This should be done graphically at first.
= Once the model is fitted, you can also look at influence
measures.

2. Perform a multivariate test of hypothesis.

3. If there is evidence of a multivariate difference, calculate
Bonferroni confidence intervals and investigate
component-wise differences.

= The projection of the confidence region onto each
variable generally leads to confidence intervals that are
too large.
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