Maximum Likelihood Theory

Max Turgeon

STAT 4690—-Applied Multivariate Analysis



Sufficient Statistics i

» We saw in the previous lecture that the multivariate
normal distribution is completely determined by its mean
vector ;1 € RP and its covariance matrix .

= Therefore, given a sample Yy,..., Y, ~ N,(i, %)

(n > p), we only need to estimate (u, ).

= Obvious candidates: sample mean Y and sample
covariance S,.



Sufficient Statistics ii

= Write down the likelihood:
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= If we take the (natural) logarithm of L and drop any term
that does not depend on (u, X)), we get
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Sufficient Statistics iii

= |If we can re-express the second summand in terms of Y
and S,,, by the Fisher-Neyman factorization theorem, we
will then know that (Y, S,) is jointly sufficient for
(1, ).

= First, we have



Sufficient Statistics iv
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Sufficient Statistics v

= Next, using the fact that tr(ABC') = tr(BC'A), we have



Sufficient Statistics vi
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Maximum Likelihood Estimators

= Going back to the log-likelihood, we get:
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= Since X! is positive definite, for ¥ fixed, the
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log-likelihood is maximised at
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= With extra effort, it can be shown that
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= In other words: (Y,3) are the maximum likelihood
estimators for (yu, 2).



Maximum Likelihood Estimators

= Since the multivariate normal density is “well-behaved”,
we can deduce the usual properties:
= Consistency: (Y,3) converges in probability to (,X).
= Efficiency: Asymptotically, the covariance of (Y, i)
achieves the Cramér-Rao lower bound.
= Invariance: For any transformation (g(u), G(X)) of
(1, %), its MLE is (g(Y), G()).



Visualizing the likelihood

library(mvtnorm)
set.seed(123)

n <- 50; p <- 2

mu <- c(1, 2)
Sigma <- matrix(c(1, 0.5, 0.5, 1), ncol = p)

Y <- rmvnorm(n, mean = mu, sigma = Sigma)
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Visualizing the likelihood

loglik <- function(mu, sigma, data = Y) {
# Compute quantities
y_bar <- colMeans(Y)
Sn <- cov(Y)
Sigma_inv <- solve(sigma)

# Compute quadratic form
quad_form <- drop(t(y_bar - mu) %+’ Sigma_inv %*J
(y_bar - mu))

-0.5*n*log(det(sigma)) -
0.5%(n - 1)*sum(diag(Sigma_inv %*7 Sn)) -

0.5*n*quad_form 1



grid_xy <- expand.grid(seq(0.5, 1.5,

length.out = 32),
seq(1, 3,
length.out = 32))

contours <- purrr::map_df (seq_len(nrow(grid_xy)),
function(i) {
# Where we will evaluate loglik
mu_obs <- as.numeric(grid xyl[i,])
# Evaluate at the pop covariance
z <- loglik(mu_obs, sigma = Sigma)
# Output data. frame
data.frame(x = mu_obs[1],
y = mu_obs[2],

ZR=7))

1)
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Visualizing the likelihood i

library(tidyverse)

library(ggrepel)

# Create df with pop and sample means

data_means <- data.frame(x = c(mu[l], mean(Y[,1])),
y = c(mu[2], mean(Y[,2])),
label = c("Pop.", "Sample"))
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Visualizing the likelihood ii

contours %>
ggplot (aes(x, y)) +
geom_contour (aes(z = z)) +
geom_point(data = data_means) +
geom_label_repel(data = data_means,
aes(label = label))
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Visualizing the likelihood iii
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Visualizing the likelihood iv

library(scatterplot3d)
with(contours, scatterplot3d(x, y, z))
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Visualizing the likelihood v
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Sampling Distributions

= Recall the univariate case:
o X~ N (u,0%/n);
112
B2~ - 1);
= X and s? are independent.

= |n the multivariate case, we have similar results:
" Y ~ Np (,U,, %2).
= (n—1)S, =nY follows a Wishart distribution with

n — 1 degrees of freedom;
= Y and S, are independent.
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Wishart Distribution

= Suppose Zj,...,Z, ~ N,(0,X) are independently
distributed. Then we say that

W => Z,Z]
i=1
follows a Wishart distribution W,,(X) with n degrees of
freedom.
» Note that since F(Z,ZT) = 2, we have E(W) = nX.
= From the previous slide: 37 (Y; — Y)(Y; — Y)7 has
the same distribution as Z?;ll Z;Z.! for some choice of
Z1,... Dy ~ N,(0,5).
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Useful Properties

» If Wy ~ W, (2) and Wy ~ W,,,(X) are independent,
then
Wi+ Wy ~ Wi 10, (2).

= If W~ W,(X) and C'is g x p, then

CWCT ~ W,(Cxo™).
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Density function

» Let X be a fixed p X p positive definite matrix. The
density of the Wishart distribution with n degrees of
freedom, with n > p, is given by

|A|(m=P=D/2 exp (—%tr(EilA))
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where A is ranging over all p x p positive definite
matrices.
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Eigenvalue density function

= For a random matrix A ~ W,,(1,) with n > p, the joint
distribution of its eigenvalues A\; > --- > A, has density

P p
CnpexP <_; Z) TTA "2 1T = Ml
i=1/ i=1 i<j

for some constant C, .
= We will study this distribution in STAT 7200—-Multivariate

Analysis |
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