Maximum Likelihood Theory

Max Turgeon

STAT 4690-Applied Multivariate Analysis

Sufficient Statistics i

- We saw in the previous lecture that the multivariate normal distribution is completely determined by its mean vector $\mu \in \mathbb{R}^p$ and its covariance matrix Σ .
- Therefore, given a sample $\mathbf{Y}_1, \dots, \mathbf{Y}_n \sim N_p(\mu, \Sigma)$ (n > p), we only need to estimate (μ, Σ) .
 - Obvious candidates: sample mean \mathbf{Y} and sample covariance S_n .

Sufficient Statistics ii

• Write down the *likelihood*:

$$L = \prod_{i=1}^{n} \left(\frac{1}{\sqrt{(2\pi)^p |\Sigma|}} \exp\left(-\frac{1}{2} (\mathbf{y}_i - \mu)^T \Sigma^{-1} (\mathbf{y}_i - \mu)\right) \right)$$
$$= \frac{1}{(2\pi)^{np/2} |\Sigma|^{n/2}} \exp\left(-\frac{1}{2} \sum_{i=1}^{n} (\mathbf{y}_i - \mu)^T \Sigma^{-1} (\mathbf{y}_i - \mu)\right)$$

• If we take the (natural) logarithm of L and drop any term that does not depend on (μ, Σ) , we get

$$\ell = -\frac{n}{2}\log|\Sigma| - \frac{1}{2}\sum_{i=1}^{n}(\mathbf{y}_i - \mu)^T \Sigma^{-1}(\mathbf{y}_i - \mu).$$

Sufficient Statistics iii

- If we can re-express the second summand in terms of $\bar{\mathbf{Y}}$ and S_n , by the Fisher-Neyman factorization theorem, we will then know that $(\bar{\mathbf{Y}}, S_n)$ is jointly **sufficient** for (μ, Σ) .
- First, we have

Sufficient Statistics iv

$$\sum_{i=1}^{n} (\mathbf{y}_{i} - \mu)(\mathbf{y}_{i} - \mu)^{T} = \sum_{i=1}^{n} (\mathbf{y}_{i} - \bar{\mathbf{y}} + \bar{\mathbf{y}} - \mu)(\mathbf{y}_{i} - \bar{\mathbf{y}} + \bar{\mathbf{y}} - \mu)^{T}$$

$$= \sum_{i=1}^{n} ((\mathbf{y}_{i} - \bar{\mathbf{y}})(\mathbf{y}_{i} - \bar{\mathbf{y}})^{T} + (\mathbf{y}_{i} - \bar{\mathbf{y}})(\bar{\mathbf{y}} - \mu)^{T}$$

$$+ (\bar{\mathbf{y}} - \mu)(\mathbf{y}_{i} - \bar{\mathbf{y}})^{T} + (\bar{\mathbf{y}} - \mu)(\bar{\mathbf{y}} - \mu)^{T})$$

$$= \sum_{i=1}^{n} (\mathbf{y}_{i} - \bar{\mathbf{y}})(\mathbf{y}_{i} - \bar{\mathbf{y}})^{T} + n(\bar{\mathbf{y}} - \mu)(\bar{\mathbf{y}} - \mu)^{T}$$

$$= (n-1)S_{n} + n(\bar{\mathbf{y}} - \mu)(\bar{\mathbf{y}} - \mu)^{T}.$$

Sufficient Statistics v

 \bullet Next, using the fact that $\operatorname{tr}(ABC)=\operatorname{tr}(BCA)$, we have

Sufficient Statistics vi

$$\sum_{i=1}^{n} (\mathbf{y}_{i} - \mu)^{T} \Sigma^{-1} (\mathbf{y}_{i} - \mu) = \operatorname{tr} \left(\sum_{i=1}^{n} (\mathbf{y}_{i} - \mu)^{T} \Sigma^{-1} (\mathbf{y}_{i} - \mu) \right)$$

$$= \operatorname{tr} \left(\sum_{i=1}^{n} \Sigma^{-1} (\mathbf{y}_{i} - \mu) (\mathbf{y}_{i} - \mu)^{T} \right)$$

$$= \operatorname{tr} \left(\Sigma^{-1} \sum_{i=1}^{n} (\mathbf{y}_{i} - \mu) (\mathbf{y}_{i} - \mu)^{T} \right)$$

$$= (n-1) \operatorname{tr} \left(\Sigma^{-1} S_{n} \right)$$

$$+ n \operatorname{tr} \left(\Sigma^{-1} (\bar{\mathbf{y}} - \mu) (\bar{\mathbf{y}} - \mu)^{T} \right)$$

$$= (n-1) \operatorname{tr} \left(\Sigma^{-1} S_{n} \right)$$

$$+ n (\bar{\mathbf{y}} - \mu)^{T} \Sigma^{-1} (\bar{\mathbf{y}} - \mu).$$

Maximum Likelihood Estimators

Going back to the log-likelihood, we get:

$$\ell = -\frac{n}{2}\log|\Sigma| - \frac{(n-1)}{2}\operatorname{tr}\left(\Sigma^{-1}S_n\right) - \frac{n}{2}(\bar{\mathbf{y}} - \mu)^T \Sigma^{-1}(\bar{\mathbf{y}} - \mu).$$

• Since Σ^{-1} is positive definite, for Σ fixed, the log-likelihood is maximised at

$$\hat{\mu} = \bar{\mathbf{y}}.$$

• With extra effort, it can be shown that $-\log |\Sigma| - \frac{(n-1)}{n} \mathrm{tr}\left(\Sigma^{-1} S_n\right) \text{ is maximised at}$

$$\hat{\Sigma} = \frac{(n-1)}{n} S_n = \frac{1}{n} \sum_{i=1}^n (\mathbf{y}_i - \bar{\mathbf{y}}) (\mathbf{y}_i - \bar{\mathbf{y}})^T.$$

• In other words: $(\bar{\mathbf{Y}}, \hat{\Sigma})$ are the maximum likelihood estimators for (μ, Σ) .

Maximum Likelihood Estimators

- Since the multivariate normal density is "well-behaved", we can deduce the usual properties:
 - Consistency: $(\bar{\mathbf{Y}}, \hat{\Sigma})$ converges in probability to (μ, Σ) .
 - **Efficiency**: Asymptotically, the covariance of $(\bar{\mathbf{Y}}, \hat{\Sigma})$ achieves the Cramér-Rao lower bound.
 - Invariance: For any transformation $(g(\mu),G(\Sigma))$ of (μ,Σ) , its MLE is $(g(\bar{\mathbf{Y}}),G(\hat{\Sigma}))$.

Visualizing the likelihood

```
library(mvtnorm)
set.seed(123)
n < -50; p < -2
mu < -c(1, 2)
Sigma \leftarrow matrix(c(1, 0.5, 0.5, 1), ncol = p)
Y <- rmvnorm(n, mean = mu, sigma = Sigma)
```

Visualizing the likelihood

```
loglik <- function(mu, sigma, data = Y) {</pre>
  # Compute quantities
  v bar <- colMeans(Y)</pre>
  Sn \leftarrow cov(Y)
  Sigma inv <- solve(sigma)
  # Compute quadratic form
  quad form <- drop(t(y bar - mu) %*% Sigma inv %*%
                        (y bar - mu))
  -0.5*n*log(det(sigma)) -
    0.5*(n-1)*sum(diag(Sigma inv %*% Sn)) -
    0.5*n*quad form
```

11

```
grid xy <- expand.grid(seq(0.5, 1.5,
                            length.out = 32),
                        seq(1, 3,
                            length.out = 32)
contours <- purrr::map_df(seq_len(nrow(grid xy)),</pre>
                           function(i) {
  # Where we will evaluate loglik
  mu obs <- as.numeric(grid xy[i,])</pre>
  # Evaluate at the pop covariance
  z <- loglik(mu obs, sigma = Sigma)
  # Output data.frame
  data.frame(x = mu obs[1],
             y = mu obs[2],
             z = z
```

Visualizing the likelihood i

Visualizing the likelihood ii

Visualizing the likelihood iii

Visualizing the likelihood iv

```
library(scatterplot3d)
with(contours, scatterplot3d(x, y, z))
```

Visualizing the likelihood v

Sampling Distributions

- Recall the univariate case:
 - $\bar{X} \sim N(\mu, \sigma^2/n)$;
 - $\frac{(n-1)s^2}{\sigma^2} \sim \chi^2(n-1);$
 - \bar{X} and s^2 are independent.
- In the multivariate case, we have similar results:
 - $\bar{\mathbf{Y}} \sim N_p\left(\mu, \frac{1}{n}\Sigma\right);$
 - $(n-1)S_n = n\hat{\Sigma}$ follows a *Wishart* distribution with n-1 degrees of freedom;
 - \mathbf{Y} and S_n are independent.

Wishart Distribution

• Suppose $\mathbf{Z}_1, \dots, \mathbf{Z}_n \sim N_p(0, \Sigma)$ are independently distributed. Then we say that

$$W = \sum_{i=1}^{n} \mathbf{Z}_i \mathbf{Z}_i^T$$

follows a Wishart distribution $W_n(\Sigma)$ with n degrees of freedom.

- Note that since $E(\mathbf{Z}_i\mathbf{Z}_i^T) = \Sigma$, we have $E(W) = n\Sigma$.
- From the previous slide: $\sum_{i=1}^{n} (\mathbf{Y}_i \bar{\mathbf{Y}}) (\mathbf{Y}_i \bar{\mathbf{Y}})^T$ has the same distribution as $\sum_{i=1}^{n-1} \mathbf{Z}_i \mathbf{Z}_i^T$ for some choice of $\mathbf{Z}_1, \dots, \mathbf{Z}_{n-1} \sim N_p(0, \Sigma)$.

Useful Properties

• If $W_1 \sim W_{n_1}(\Sigma)$ and $W_2 \sim W_{n_2}(\Sigma)$ are independent, then

$$W_1 + W_2 \sim W_{n_1 + n_2}(\Sigma).$$

• If $W \sim W_n(\Sigma)$ and C is $q \times p$, then

$$CWC^T \sim W_n(C\Sigma C^T).$$

Density function

• Let Σ be a fixed $p \times p$ positive definite matrix. The density of the Wishart distribution with n degrees of freedom, with $n \geq p$, is given by

$$w_n(A; \Sigma) = \frac{|A|^{(n-p-1)/2} \exp\left(-\frac{1}{2} \operatorname{tr}(\Sigma^{-1} A)\right)}{2^{np/2} \pi^{p(p-1)/4} |\Sigma|^{n/2} \prod_{i=1}^p \left(\frac{1}{2} (n-i+1)\right)},$$

where A is ranging over all $p \times p$ positive definite matrices.

Eigenvalue density function

• For a random matrix $A \sim W_n(I_p)$ with $n \geq p$, the joint distribution of its eigenvalues $\lambda_1 \geq \cdots \geq \lambda_p$ has density

$$C_{n,p} \exp\left(-\frac{1}{2}\sum_{i=1}^{p}\right) \prod_{i=1}^{p} \lambda_i^{(n-p-1)/2} \prod_{i < j} |\lambda_i - \lambda_j|,$$

for some constant $C_{n,p}$.

 We will study this distribution in STAT 7200–Multivariate Analysis I