Multidimensional Scaling

Max Turgeon

STAT 4690-Applied Multivariate Analysis

Recap: PCA

- We discussed several interpretations of PCA.
 - Pearson: PCA gives the best linear approximation to the data (at a fixed dimension).
- We also used PCA to visualized multivariate data:
 - Fit PCA
 - Plot PC1 against PC2.

Multidimensional scaling

- Multidimensional scaling is a method that looks at these two goals explicitely.
 - It has PCA has a special case.
 - But it is much more general.
- The input of MDS is a **dissimilarity matrix** Δ , and it aims to represent the data in a lower-dimensional space such that the resulting dissimilarities $\tilde{\Delta}$ are as close as possible to the original dissimilarities.
 - $\Delta \approx \tilde{\Delta}$.

Example of dissimilarities

- Dissimilaries measure how different two observations are.
 - Larger disssimilarity, more different.
- Therefore, any distance measure can be used as a dissimilarity measure.
 - Euclidean distance in \mathbb{R}^p .
 - Mahalanobis distance.
 - Driving distance between cities.
 - Graph-based distance.
- Any similarity measure can be turned into a dissimilarity measure using a monotone decreasing transformation.
 - E.g. $r_{ij} \Longrightarrow 1 r_{ij}^2$

Two types of MDS

Metric MDS

 The embedding in the lower dimensional space uses the same dissimilarity measure as in the original space.

Nonmetric MDS

 The embedding in the lower dimensional space only uses the rank information from the original space.

Metric MDS-Algorithm

- Input: An $n \times n$ matrix Δ of dissimilarities.
- Output: An $n \times r$ matrix \tilde{X} , with r < p.

Algorithm

- 1. Create the matrix D containing the square of the entries in Δ .
- 2. Create S by centering both the rows and the columns and multiplying by $-\frac{1}{2}$.
- 3. Compute the eigenvalue decomposition $S = U\Lambda U^T$.
- 4. Let \tilde{X} be the matrix containing the first r columns of $\Lambda^{1/2}U^T.$

Example i

```
Delta <- dist(swiss)</pre>
D <- Delta^2
# Center columns
B <- scale(D, center = TRUE, scale = FALSE)
# Center rows
B <- t(scale(t(B), center = TRUE, scale = FALSE))</pre>
B < -0.5 * B
```

Example ii

decomp <- eigen(B)</pre>

```
Lambda <- diag(pmax(decomp$values, 0))
X_tilde <- decomp$vectors %*% Lambda^0.5
plot(X tilde)</pre>
```

Example iii

Example iv

Example v

Example vi

```
X tilde <- X tilde %>%
 mutate(Canton = case when(
   District %in% c("Courtelary", "Moutier",
                    "Neuveville") ~ "Bern".
   District %in% c("Broye", "Glane", "Gruyere",
                    "Sarine", "Veveyse") ~ "Fribourg",
   District %in% c("Conthey", "Entremont", "Herens",
                    "Martigwy", "Monthey",
                    "St Maurice", "Sierre",
                    "Sion") ~ "Valais"))
```

Example vii

```
X tilde <- X tilde %>%
 mutate(Canton = case when(!is.na(Canton) ~ Canton,
   District %in% c("Boudry", "La Chauxdfnd",
                    "Le Locle", "Neuchatel",
                    "ValdeTravers",
                    "Val de Ruz") ~ "Neuchatel",
   District %in% c("V. De Geneve", "Rive Droite",
                    "Rive Gauche") ~ "Geneva".
   District %in% c("Delemont", "Franches-Mnt",
                    "Porrentruy") ~ "Jura",
   TRUE ~ "Vaud"))
```

Example viii

```
library(ggrepel)
X_tilde %>%
    ggplot(aes(MDS1, MDS2)) +
    geom_point(aes(colour = Canton)) +
    geom_label_repel(aes(label = District)) +
    theme_minimal() +
    theme(legend.position = "top")
```

Example ix

Figure 1

Another example i

```
library(psych)
cities[1:5, 1:5]
```

```
## ATL BOS ORD DCA DEN
## ATL 0 934 585 542 1209
## BOS 934 0 853 392 1769
## ORD 585 853 0 598 918
## DCA 542 392 598 0 1493
## DEN 1209 1769 918 1493 0
```

Another example ii

```
mds <- cmdscale(cities, k = 2)
colnames(mds) <- c("MDS1", "MDS2")

mds <- mds %>%
   as.data.frame %>%
   rownames_to_column("Cities")
```

Another example iii

```
mds %>%
  ggplot(aes(MDS1, MDS2)) +
  geom_point() +
  geom_label_repel(aes(label = Cities)) +
  theme_minimal()
```

Another example iv

Another example v

```
mds %>%
  mutate(MDS1 = -MDS1, MDS2 = -MDS2) %>%
  ggplot(aes(MDS1, MDS2)) +
  geom_point() +
  geom_label_repel(aes(label = Cities)) +
  theme_minimal()
```

Another example vi

Why does it work? i

- The algorithm may seem like black magic...
 - Double centering?
 - Eigenvectors of distances?
- Let's try to justify it.
- Let $\mathbf{Y}_1, \dots, \mathbf{Y}_n$ be a set of points in \mathbb{R}^p .
- Recall that in \mathbb{R}^p , the Euclidean distance and the scalar product are related as follows:

$$\begin{split} d(\mathbf{Y}_i, \mathbf{Y}_j)^2 &= \langle \mathbf{Y}_i - \mathbf{Y}_j, \mathbf{Y}_i - \mathbf{Y}_j \rangle \\ &= (\mathbf{Y}_i - \mathbf{Y}_j)^T (\mathbf{Y}_i - \mathbf{Y}_j) \\ &= \mathbf{Y}_i^T \mathbf{Y}_i - 2 \mathbf{Y}_i^T \mathbf{Y}_j + \mathbf{Y}_j^T \mathbf{Y}_j. \end{split}$$

• In other words, the scalar product between \mathbf{Y}_i and \mathbf{Y}_j is given by

$$\mathbf{Y}_i^T \mathbf{Y}_j = -\frac{1}{2} \left(d(\mathbf{Y}_i, \mathbf{Y}_j)^2 - \mathbf{Y}_i^T \mathbf{Y}_i - \mathbf{Y}_j^T \mathbf{Y}_j \right).$$

Why does it work? iii

- Let S be the matrix whose (i, j)-th entry is $\mathbf{Y}_i^T \mathbf{Y}_j$, and note that D is the matrix whose (i, j)-th entry is $d(\mathbf{Y}_i, \mathbf{Y}_j)^2$.
- Now, assume that the dataset $\mathbf{Y_1}, \dots, \mathbf{Y}_n$ has sample mean $\bar{\mathbf{Y}} = 0$ (i.e. it is centred). The average of the i-th row of D is

$$\frac{1}{n} \sum_{j=1}^{n} d(\mathbf{Y}_i, \mathbf{Y}_j)^2 = \frac{1}{n} \sum_{j=1}^{n} \left(\mathbf{Y}_i^T \mathbf{Y}_i - 2 \mathbf{Y}_i^T \mathbf{Y}_j + \mathbf{Y}_j^T \mathbf{Y}_j \right)
= \mathbf{Y}_i^T \mathbf{Y}_i - \frac{2}{n} \sum_{j=1}^{n} \mathbf{Y}_i^T \mathbf{Y}_j + \frac{1}{n} \sum_{j=1}^{n} \mathbf{Y}_j^T \mathbf{Y}_j
= \mathbf{Y}_i^T \mathbf{Y}_i - 2 \mathbf{Y}_i^T \bar{\mathbf{Y}} + \frac{1}{n} \sum_{j=1}^{n} \mathbf{Y}_j^T \mathbf{Y}_j
= S_{ii} + \frac{1}{n} \sum_{j=1}^{n} S_{jj}.$$

Similarly, the average of the j-th column of D is given by

$$\frac{1}{n} \sum_{i=1}^{n} d(\mathbf{Y}_i, \mathbf{Y}_j)^2 = \frac{1}{n} \sum_{i=1}^{n} S_{ii} + S_{jj}.$$

We can then deduce that the mean of all the entries of D is given by

$$\frac{1}{n^2} \sum_{i=1}^n \sum_{j=1}^n d(\mathbf{Y}_i, \mathbf{Y}_j)^2 = \frac{1}{n} \sum_{i=1}^n S_{ii} + \frac{1}{n} \sum_{j=1}^n S_{jj}.$$

Why does it work? vi

Putting all of this together, we now have that

$$\mathbf{Y}_{i}^{T}\mathbf{Y}_{i} + \mathbf{Y}_{j}^{T}\mathbf{Y}_{j} = \frac{1}{n} \sum_{j=1}^{n} d(\mathbf{Y}_{i}, \mathbf{Y}_{j})^{2}$$
$$+ \frac{1}{n} \sum_{i=1}^{n} d(\mathbf{Y}_{i}, \mathbf{Y}_{j})^{2}$$
$$- \frac{1}{n^{2}} \sum_{i=1}^{n} \sum_{j=1}^{n} d(\mathbf{Y}_{i}, \mathbf{Y}_{j})^{2}.$$

Why does it work? vii

- In other words, we can recover the scalar products from the square distances through double centering and scaling.
- Moreover, since we assumed the data was centred, the SVD of the matrix S is related to the SVD of the sample covariance matrix.
 - In this context, up to a constant, MDS and PCA give the same results.
- Note: This idea that double centering allows us to go from dissimilaries to scalar products will come back again in the next lecture on kernel methods.

Further comments

- In PCA, we performed an eigendecomposition of the sample covariance matrix.
 - This is a $p \times p$ matrix.
- In MDS, we performed an eigendecomposition of the doubly centred and scaled matrix of squared distances.
 - This is an $n \times n$ matrix.
- If our dissimilarities are computed using the Euclidean distance, both methods will give the same answer.
 - BUT: the smallest matrix will be faster to compute and faster to decompose.
 - $n > p \Rightarrow PCA$; n

Stress function i

- Nonmetric MDS approaches the problem a bit differently.
- We still have the same output \(\Delta \) of dissimilarities, but we also have an objective function called the **stress** function.
- Recall that our goal is to represent the data in a lower-dimensional space such that the resulting dissimilarities $\tilde{\Delta}$ are as close as possible to the original dissimilarities.
 - $\Delta_{ij} \approx \tilde{\Delta}_{ij}$, for all i, j.

Stress function ii

The stress function is defined as

Stress(
$$\tilde{\Delta}; r$$
) = $\sqrt{\frac{\sum_{i,j=1}^{n} w_{ij} (\Delta_{ij} - \tilde{\Delta}_{ij})^{2}}{c}}$,

where

- w_{ij} are nonnegative weights;
- c is a normalising constant.
- Note that the stress function depends on both the dimension r of the lower space and the distances $\tilde{\Delta}$.
- Goal: Find points in \mathbb{R}^r such that their similarities minimise the stress function.

Sammon's Nonlinear Mapping

The stress function is

Stress(
$$\tilde{\Delta}$$
; r) = $\frac{1}{c} \sum_{i=1, i < j}^{n} \frac{(\Delta_{ij} - \tilde{\Delta}_{ij})^2}{\Delta_{ij}}$,

where

$$c = \sum_{i=1, i < j}^{n} \Delta_{ij}.$$

- We don't make any assumption on the dissimilarities Δ , but we assume that $\tilde{\Delta}$ arises from the Euclidean distance in \mathbb{R}^r .
 - This makes the minimisation problem easier and amenable to Newton's method.

Example i

```
library(MASS)

Delta <- dist(swiss)
mds <- sammon(Delta, k = 2)

## Initial stress : 0.01959</pre>
```

stress after 0 iters: 0.01959

Example ii

plot(mds\$points)

Example iii

Example iv

Example v

Example vi

library(scatterplot3d)

mds <- sammon(Delta, k = 3)

Example vii

Kruskal's Nonmetric MDS

- Kruskal's approach is based on ranks.
- In other words: instead of finding points in R^r with similar distances, his method tries to preserve the relative ordering of the dissimilarities.
 - The most dissimilar points in \mathbb{R}^p should be represented by the most dissimilar points in \mathbb{R}^r , but the actual magnitude is irrelevant.
- This is achieved by allowing a monotone transformation f of the dissimilarities. We thus get

Stress(
$$\tilde{\Delta}$$
; r) = $\sqrt{\frac{\sum_{i=1, i < j}^{n} (f(\Delta_{ij}) - \tilde{\Delta}_{ij})^{2}}{\sum_{i=1, i < j}^{n} \tilde{\Delta}_{ij}}}$.

Example (cont'd) i

```
mds_s <- sammon(Delta, k = 2)

## Initial stress : 0.01959

## stress after 0 iters: 0.01959

mds_k <- isoMDS(Delta, k = 2)</pre>
```

Example (cont'd) ii

```
## initial value 5.463800
## iter 5 value 4.499103
## iter 5 value 4.495335
## iter 5 value 4.492669
## final value 4.492669
## converged
```

Example (cont'd) iii

Example (cont'd) iv

Example (cont'd) v

Example (cont'd) vi

Example (cont'd) vii

Example (cont'd) viii

Example (cont'd) ix

```
# More interestingly, you can use MDS to
# cluster data where you only have distances
stresses <- sapply(seq(2, 6),
                   function(k) {
                     isoMDS(as.matrix(cities),
                            k = k.
                            trace = FALSE) $stress
                     })
plot(seq(2, 6), stresses, type = 'b')
```

Example (cont'd) x

Example (cont'd) xi

```
mds cities <- isoMDS(as.matrix(cities), k = 6,
                      trace = FALSE)
cluster cities <- kmeans(mds cities$points,</pre>
                          centers = 2)
plot(mds cities$points, main = "Kruskal",
     xlab = "MDS1", ylab = "MDS2",
     type = 'n')
text(mds cities$points, colnames(cities),
     col = cluster cities$cluster)
```

Example (cont'd) xii

Summary

- Multidimensional scaling is mainly a method for visualising multivariate data.
- It works by finding points in a lower dimensional space with similar dissimilarities than the one on the original space.
- It only requires a matrix of dissimilarities
 - Therefore, it allows us to visualise data with limited information.
- MDS is an example of a nonlinear dimension reduction method.