Multidimensional Scaling

Max Turgeon

STAT 4690-Applied Multivariate Analysis

Recap: PCA

» We discussed several interpretations of PCA.
= Pearson: PCA gives the best linear approximation to
the data (at a fixed dimension).
= We also used PCA to visualized multivariate data:

= Fit PCA
= Plot PC1 against PC2.

Multidimensional scaling

» Multidimensional scaling is a method that looks at
these two goals explicitely.
= It has PCA has a special case.
= But it is much more general.
= The input of MDS is a dissimilarity matrix A, and it
aims to represent the data in a lower-dimensional space
such that the resulting dissimilarities A are as close as
possible to the original dissimilarities.
» AxA.

Example of dissimilarities

= Dissimilaries measure how different two observations are.
= Larger disssimilarity, more different.

» Therefore, any distance measure can be used as a
dissimilarity measure.
= Euclidean distance in RP.
= Mahalanobis distance.
= Driving distance between cities.
= Graph-based distance.

» Any similarity measure can be turned into a dissimilarity

measure using a monotone decreasing transformation.

2

Two types of MDS

= Metric MDS

= The embedding in the lower dimensional space uses the
same dissimilarity measure as in the original space.

= Nonmetric MDS

= The embedding in the lower dimensional space only uses
the rank information from the original space.

Metric MDS—-Algorithm

= Input: An n x n matrix A of dissimilarities.
= Output: An n x 7 matrix X, with r < p.

Algorithm

1. Create the matrix D containing the square of the entries
in A.

2. Create S by centering both the rows and the columns and
multiplying by —%.

3. Compute the eigenvalue decomposition S = UAU™.

4. Let X be the matrix containing the first 7 columns of
AT,

Delta <- dist(swiss)
D <- Delta™2

Center columns
B <- scale(D, center = TRUE, scale = FALSE)

Center rows
B <- t(scale(t(B), center = TRUE, scale = FALSE))

B <--0.5 B

decomp <- eigen(B)
Lambda <- diag(pmax(decomp$values, 0))
X_tilde <- decomp$vectors %+’ Lambda~0.5

plot(X_tilde)

[.2]

X_tilde|

20

-20

-40

-60

o
° o
S £%
o
o
o
o %
%; oo
® o
o
o o0
o
o o
°
T T T T T T
-60 -40 -20 0 20 40

X_tildef,1]

mds <- cmdscale(Delta, k = 2)

all.equal(X_tilde[,1:2], mds,
check.attributes = FALSE)

[1] TRUE

10

library(tidyverse)

Let's add annotations

dimnames (X tilde) <- list(rownames(swiss),
paste0("MDS", seq_len(ncol(X

X_tilde <- as.data.frame(X_tilde) %>%

rownames_to_column("District")

11

X_tilde <- X_tilde %>%
mutate(Canton = case_when(

District %in% c("Courtelary", "Moutier",
"Neuveville") ~ "Bern",

District %in% c("Broye", "Glane", "Gruyere",
"Sarine", "Veveyse") ~ "Fribourg",

District %in% c("Conthey", "Entremont", "Herens",
"Martigwy", "Monthey",
"St Maurice", "Sierre",

"Sion") ~ "Valais"))

12

X _tilde <- X_tilde %>%
mutate(Canton = case_when('!is.na(Canton) ~ Canton,

District %in’% c("Boudry", "La Chauxdfnd",
"Le Locle", "Neuchatel",
"ValdeTravers",
"Val de Ruz") ~ "Neuchatel",

District %in% c("V. De Geneve", "Rive Droite",
"Rive Gauche") ~ "Geneva'",

District %in% c("Delemont", "Franches-Mnt",
"Porrentruy") ~ "Jura",

TRUE ~ "Vaud"))

13

library(ggrepel)

X_tilde %>%
ggplot (aes(MDS1, MDS2)) +
geom_point(aes(colour = Canton)) +
geom_label_repel(aes(label = District)) +
theme_minimal () +

theme (legend.position = "top")

14

MDS2

-60

o
Franches-Mnt

Canton

Bemn

Fribourg

© Geneva © Neuchatel

* Jura Valais

.

MDS1

Vaud

Paysd'enhaut

ValdeTravers
Courtelary
La Vallee

:

25

a
g

15

Geographical distribution of the | of Switzerland (2000

- German

0 French

- Italian

I Romansh

- bilingual areas and cities*
*Areas wit hanging majoites, radionalystrong

minorte o ather aficial Lnguages over 30%) and
ofcallybiingual ommuritis.

offcalbingualare th antons o
~Beme/ e (Geman majority)
Fibour Freburg rench maorty)
Vi Wals Fench majrty)

oficaly lingualisth antonof
~Guaubinden/ Gigoi/Grichun

(German majority)

Defact bilngual e the cantons of
~Jura French majrity)
i aan maorty)

Figure 1

16

Another example i

library(psych)
cities[1:5, 1:5]

#i# ATL BOS ORD DCA DEN
ATL 0 934 585 542 1209
BOS 934 0 853 392 1769
ORD 585 853 O 598 918
DCA 542 392 598 0 1493
DEN 1209 1769 918 1493 0

17

Another example ii

mds <- cmdscale(cities, k = 2)
colnames(mds) <- c("MDS1", "MDS2")

mds <- mds %>%

as.data.frame %>

rownames_to_column("Cities")

18

Another example iii

mds %>%
ggplot (aes(MDS1, MDS2)) +
geom_point() +
geom_label_repel(aes(label = Cities)) +

theme_minimal ()

19

Another example iv

.
MIA

400

MDS2

-400

-1000

.
MSY

LAX
ATL

SFO
.

DEN

SEA

0 1000
MDS1

20

Another example v

mds %>%
mutate (MDS1 = -MDS1, MDS2 = -MDS2) %>
gegplot (aes(MDS1, MDS2)) +
geom_point() +
geom_label_repel(aes(label = Cities)) +
theme_minimal ()

21

Another example vi

.
SEA .
BOS
400 .
.
DCA
o 0 .
2 DEN
s .
SFO
.
o
.
MSY
.
MIA
-1000 [1000

MDS1

22

Why does it work? i

= The algorithm may seem like black magic...
= Double centering?
= Eigenvectors of distances?
» Let's try to justify it.
» Let Yq,...,Y, be aset of points in RP.
= Recall that in R?, the Euclidean distance and the scalar
product are related as follows:

23

Why does it work? i

d(YZ’7Y]‘)2 = <Y2 i Yj7Yi - Y]>
=(Y; - Y,)' (Y. - Y;)
=YY, -2Y]Y; + Y)Y,

= In other words, the scalar product between Y; and Y is
given by

1
Y?YJ = —5 (d<Y17Y])2 - YZTYZ o YfYJ) ’

24

Why does it work? iii

= Let S be the matrix whose (i, j)-th entry is Y'Y}, and
note that D is the matrix whose (i, 7)-th entry is
d(Y:,Y;)>

= Now, assume that the dataset Y,...,Y, has sample
mean Y = 0 (i.e. it is centred). The average of the i-th
row of D is

25

Why does it work? iv

n 1 n
=AY, Y2 = =3 (YIY, - 2YT Y, + YTY))
=1 " j=1
_YTY, - 23YTY 4 Ly vy
= i tiT 231 i X5+ n Z; iy
‘7: ‘7:

_ 12
NG ENTE NN
j=1
1 n
= Si+—~>_ Sij.

g=1

26

Why does it work? v

= Similarly, the average of the j-th column of D is given by

nzd(YﬂY nZSZZ+SJJ

= We can then deduce that the mean of all the entries of

D is given by
L5 e sl
TL —~ = 2 ni:l [nj:1 i3

27

Why does it work? vi

» Putting all of this together, we now have that

1 n
Y Y, +Y]Y; = - 2 d(Y;, Y;)?
]:

28

Why does it work? vii

» In other words, we can recover the scalar products from
the square distances through double centering and scaling.

= Moreover, since we assumed the data was centred, the
SVD of the matrix S is related to the SVD of the sample
covariance matrix.

= In this context, up to a constant, MDS and PCA give
the same results.

= Note: This idea that double centering allows us to go
from dissimilaries to scalar products will come back again
in the next lecture on kernel methods.

29

Further comments

» In PCA, we performed an eigendecomposition of the
sample covariance matrix.
= This is a p X p matrix.
= In MDS, we performed an eigendecomposition of the
doubly centred and scaled matrix of squared distances.
= This is an n X n matrix.
» |If our dissimilarities are computed using the Euclidean
distance, both methods will give the same answer.

= BUT: the smallest matrix will be faster to compute and
faster to decompose.
= n>p=PCA; n<p= MDS

30

Stress function i

= Nonmetric MDS approaches the problem a bit differently.

= We still have the same output A of dissimilarities, but we
also have an objective function called the stress
function.

» Recall that our goal is to represent the data in a
lower-dimensional space such that the resulting
dissimilarities A are as close as possible to the original
dissimilarities.

D Aij ~ Aij; for all Z,j

31

Stress function ii

= The stress function is defined as

Stress(A;r):\l by (B = Bi)*

where
= w;; are nonnegative weights;
= cis a normalising constant.
= Note that the stress function depends on both the
dimension r of the lower space and the distances A.
» Goal: Find points in R" such that their similarities
minimise the stress function.

32

Sammon’s Nonlinear Mapping

= The stress function is

Stress Z T,
ij

z:l,z<]

where
n
= 3 Ay
i=1,i<j
= We don’t make any assumption on the dissimilarities A,
but we assume that A arises from the Euclidean distance
in R".
= This makes the minimisation problem easier and
amenable to Newton's method.

33

library (MASS)

Delta <- dist(swiss)
mds <- sammon(Delta, k = 2)

Initial stress : 0.01959
stress after 0 iters: 0.01959

34

plot (mds$points)

35

Example i

o
o
® e
Q4 o
54 8, S
o o
o
o ° o
o o o
® 5 %> oo
& o o
i)
£ o
3 o ®
] o o
s Q o o o
€ o
E o ® o
oo
o
o
3
i
8
T
o
T T T T T T
-60 -40 -20 0 20 40

mds$points[,1]

36

Fit for different wvalues of k
stresses <- sapply(seq(2, 10),
function(k) {
sammon (Delta, k = k,
trace = FALSE)$stress
)
plot(seq(2, 10), stresses, type = 'b')

37

0200

ST0°0

T
0100

sassans

S00°0

0000

10

seq(2, 10)

38

library(scatterplot3d)
mds <- sammon(Delta, k = 3)

Initial stress : 0.00243
stress after 10 iters: 0.00095, magic = 0.500
stress after 20 iters: 0.00094, magic = 0.500

scatterplot3d(mds$points,
xlab = "MDS1", ylab = "MDS2",
zlab = "MDS3")

39

¢SAn
°
<
S
8
°
S
8
)
o o °
o © °
o ° \i
0 %o oe)
o o o © 2
8
o i
° o
o © 9l 8
o
Of o
o
o
Ca) 5 5o
o 8 o
; ; ; ; ; ;
ov 0 0z O 0 OI- Oz Of-

60

20

-20

-60

-80

MDS1

40

Kruskal’'s Nonmetric MDS

= Kruskal's approach is based on ranks.
= In other words: instead of finding points in R" with
similar distances, his method tries to preserve the relative
ordering of the dissimilarities.
= The most dissimilar points in R? should be represented
by the most dissimilar points in R", but the actual
magnitude is irrelevant.
= This is achieved by allowing a monotone transformation f
of the dissimilarities. We thus get
5 (f(Ay) — Aij)Q

Stress(A;r) = J izl’iqn -
Zi=17i<j Aij

41

Example (cont’'d) i

mds_s <- sammon(Delta, k = 2)

Initial stress : 0.01959
stress after 0 iters: 0.01959

mds_k <- isoMDS(Delta, k = 2)

42

Example (cont’d) ii

initial value 5.463800
iter 5 value 4.499103
iter 5 value 4.495335
iter 5 value 4.492669
final value 4.492669

converged

par (mfrow = c(1, 2))

plot(mds_s$points, main = "Sammon",
xlab = "MDS1", ylab = "MDS2")

plot(mds_k$points, main = "Kruskal",
xlab = "MDS1", ylab = "MDS2")

43

Example (cont’d)

MDS2

20

-20

-40

-60

Sammon Kruskal
° k)
° [
® N o
S8 %
% & o OO
o
o g 8 o
o ® [o])
0o & o @ @
§ @ % o
o ® o ®
°o o 3 g ° o °og&
o 00 a 9
%o o = o o
o
° ° o
oo} =} o
<
o)
1=}
3
T
o o
T T T T T T T T T T T T
-60 -40 -20 0 20 40 -60 -40 -20 O 20 40

Example (cont’d) iv

Sammon and Kruskal have different
optimal k
stresses <- sapply(seq(2, 10),
function(k) {
isoMDS(Delta, k = k,
trace = FALSE)$stress

i)

plot(seq(2, 10), stresses, type = 'b')

45

Example (cont’d) v

o
<
o
"
@
8
8
g
% o« o
o o\
O\
o O\O o o o o
T T T T T
2 4 6 8 10

seq(2, 10)

46

Example (cont’d) vi

mds_opt_s <- sammon(Delta, k = 3,
trace = FALSE)
mds_opt_k <- isoMDS(Delta, k = 6,
trace = FALSE)

Let's cluster in the MDS space

2)
2)

cluster_s <- kmeans(mds_opt_s$points, centers

cluster_k <- kmeans(mds_opt_k$points, centers

47

Example (cont’d) vii

par (mfrow = c(1, 2))

plot(mds_s$points, main = "Sammon",
xlab = "MDS1", ylab = "MDS2",
col = cluster_s$cluster)

plot(mds_k$points, main = "Kruskal",
xlab = "MDS1", ylab = "MDS2",

col = cluster_k$cluster)

48

Example (cont’d) viii

MDS2

20

-20

-40

-60

Sammon Kruskal
° k)
o [
® N o
S8 %
% @ o OO
o
o g 8 o
o ® [o])
0o & o @ @
§ @ % o
o ® o ®
°o o 3 g ° o °og&
o 0o a 9 °
%o o = o o
o
o o ®
0% o o
<
o)
1=}
3
T
o o
T T T T T T T T T T T T
-60 -40 -20 0 20 40 -60 -40 -20 O 20 40

Example (cont’d) ix

More interestingly, you can use MDS to
cluster data where you only have distances
stresses <- sapply(seq(2, 6),
function(k) {
isoMDS(as.matrix(cities),
k =k,
trace = FALSE)$stress
)
plot(seq(2, 6), stresses, type = 'b')

50

Example (cont’d) x

i \

0.1060 0.1065

0.1055

0.1050
o
- o

51

Example (cont’d) xi

mds cities <- isoMDS(as.matrix(cities), k = 6,
trace = FALSE)
cluster_cities <- kmeans(mds_cities$points,

centers = 2)

plot(mds_cities$points, main = "Kruskal",
xlab = "MDS1", ylab = "MDS2",
type = 'n')

text (mds_cities$points, colnames(cities),

col = cluster cities$cluster)

52

Example (cont’d) x

Kruskal
MIA

S

8 mMSY

8 4

S LAX

° ATL

s

&
) SFO
o
s o - DEN

8

S DCA

! ORD

§ 4 o

o | BOS

$ 9 SEA

T T T T T T
-1000 -500 0 500 1000 1500
MDSL

53

» Multidimensional scaling is mainly a method for
visualising multivariate data.

» It works by finding points in a lower dimensional space
with similar dissimilarities than the one on the original
space.

» It only requires a matrix of dissimilarities

= Therefore, it allows us to visualise data with limited
information.

= MDS is an example of a nonlinear dimension
reduction method.

54

