Multidimensional Scaling
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Recap: PCA

» We discussed several interpretations of PCA.
= Pearson: PCA gives the best linear approximation to
the data (at a fixed dimension).
= We also used PCA to visualized multivariate data:

= Fit PCA
= Plot PC1 against PC2.



Multidimensional scaling

» Multidimensional scaling is a method that looks at
these two goals explicitely.
= It has PCA has a special case.
= But it is much more general.
= The input of MDS is a dissimilarity matrix A, and it
aims to represent the data in a lower-dimensional space
such that the resulting dissimilarities A are as close as
possible to the original dissimilarities.
» AxA.



Example of dissimilarities

= Dissimilaries measure how different two observations are.
= Larger disssimilarity, more different.

» Therefore, any distance measure can be used as a
dissimilarity measure.
= Euclidean distance in RP.
= Mahalanobis distance.
= Driving distance between cities.
= Graph-based distance.

» Any similarity measure can be turned into a dissimilarity

measure using a monotone decreasing transformation.
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Two types of MDS

= Metric MDS

= The embedding in the lower dimensional space uses the
same dissimilarity measure as in the original space.

= Nonmetric MDS

= The embedding in the lower dimensional space only uses
the rank information from the original space.



Metric MDS—-Algorithm

= Input: An n x n matrix A of dissimilarities.
= Output: An n x 7 matrix X, with r < p.

Algorithm

1. Create the matrix D containing the square of the entries
in A.

2. Create S by centering both the rows and the columns and
multiplying by —%.

3. Compute the eigenvalue decomposition S = UAU™.

4. Let X be the matrix containing the first 7 columns of
AT,



Delta <- dist(swiss)
D <- Delta™2

# Center columns
B <- scale(D, center = TRUE, scale = FALSE)

# Center rows
B <- t(scale(t(B), center = TRUE, scale = FALSE))

B <--0.5 B



decomp <- eigen(B)
Lambda <- diag(pmax(decomp$values, 0))
X_tilde <- decomp$vectors %+’ Lambda~0.5

plot(X_tilde)
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mds <- cmdscale(Delta, k = 2)

all.equal(X_tilde[,1:2], mds,
check.attributes = FALSE)

## [1] TRUE
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library(tidyverse)

# Let's add annotations

dimnames (X tilde) <- list(rownames(swiss),
paste0("MDS", seq_len(ncol(X

X_tilde <- as.data.frame(X_tilde) %>%

rownames_to_column("District")

11



X_tilde <- X_tilde %>%
mutate(Canton = case_when(

District %in% c("Courtelary", "Moutier",
"Neuveville") ~ "Bern",

District %in% c("Broye", "Glane", "Gruyere",
"Sarine", "Veveyse") ~ "Fribourg",

District %in% c("Conthey", "Entremont", "Herens",
"Martigwy", "Monthey",
"St Maurice", "Sierre",

"Sion") ~ "Valais"))
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X _tilde <- X_tilde %>%
mutate(Canton = case_when('!is.na(Canton) ~ Canton,

District %in’% c("Boudry", "La Chauxdfnd",
"Le Locle", "Neuchatel",
"ValdeTravers",
"Val de Ruz") ~ "Neuchatel",

District %in% c("V. De Geneve", "Rive Droite",
"Rive Gauche") ~ "Geneva'",

District %in% c("Delemont", "Franches-Mnt",
"Porrentruy") ~ "Jura",

TRUE ~ "Vaud"))
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library(ggrepel)

X_tilde %>%
ggplot (aes(MDS1, MDS2)) +
geom_point(aes(colour = Canton)) +
geom_label_repel(aes(label = District)) +
theme_minimal () +

theme (legend.position = "top")
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Another example i

library(psych)
cities[1:5, 1:5]

#i# ATL BOS ORD DCA DEN
## ATL 0 934 585 542 1209
## BOS 934 0 853 392 1769
## ORD 585 853 O 598 918
## DCA 542 392 598 0 1493
## DEN 1209 1769 918 1493 0
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Another example ii

mds <- cmdscale(cities, k = 2)
colnames(mds) <- c("MDS1", "MDS2")

mds <- mds %>%

as.data.frame %>

rownames_to_column("Cities")
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Another example iii

mds %>%
ggplot (aes(MDS1, MDS2)) +
geom_point() +
geom_label_repel(aes(label = Cities)) +

theme_minimal ()
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Another example iv
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Another example v

mds %>%
mutate (MDS1 = -MDS1, MDS2 = -MDS2) %>
gegplot (aes(MDS1, MDS2)) +
geom_point() +
geom_label_repel(aes(label = Cities)) +
theme_minimal ()
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Another example vi
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Why does it work? i

= The algorithm may seem like black magic...
= Double centering?
= Eigenvectors of distances?
» Let's try to justify it.
» Let Yq,...,Y, be aset of points in RP.
= Recall that in R?, the Euclidean distance and the scalar
product are related as follows:
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Why does it work? i

d(YZ’7Y]‘)2 = <Y2 i Yj7Yi - Y]>
=(Y; - Y,)' (Y. - Y;)
=YY, -2Y]Y; + Y)Y,

= In other words, the scalar product between Y; and Y is
given by

1
Y?YJ = —5 (d<Y17Y])2 - YZTYZ o YfYJ) ’
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Why does it work? iii

= Let S be the matrix whose (i, j)-th entry is Y'Y}, and
note that D is the matrix whose (i, 7)-th entry is
d(Y:,Y;)>

= Now, assume that the dataset Y,...,Y, has sample
mean Y = 0 (i.e. it is centred). The average of the i-th
row of D is
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Why does it work? iv
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Why does it work? v

= Similarly, the average of the j-th column of D is given by

nzd(YﬂY nZSZZ+SJJ

= We can then deduce that the mean of all the entries of

D is given by
L5 e sl
TL —~ = 2 ni:l [ nj:1 i3
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Why does it work? vi

» Putting all of this together, we now have that

1 n
Y Y, +Y]Y; = - 2 d(Y;, Y;)?
]:
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Why does it work? vii

» In other words, we can recover the scalar products from
the square distances through double centering and scaling.

= Moreover, since we assumed the data was centred, the
SVD of the matrix S is related to the SVD of the sample
covariance matrix.

= In this context, up to a constant, MDS and PCA give
the same results.

= Note: This idea that double centering allows us to go
from dissimilaries to scalar products will come back again
in the next lecture on kernel methods.
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Further comments

» In PCA, we performed an eigendecomposition of the
sample covariance matrix.
= This is a p X p matrix.
= In MDS, we performed an eigendecomposition of the
doubly centred and scaled matrix of squared distances.
= This is an n X n matrix.
» |If our dissimilarities are computed using the Euclidean
distance, both methods will give the same answer.

= BUT: the smallest matrix will be faster to compute and
faster to decompose.
= n>p=PCA; n<p= MDS
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Stress function i

= Nonmetric MDS approaches the problem a bit differently.

= We still have the same output A of dissimilarities, but we
also have an objective function called the stress
function.

» Recall that our goal is to represent the data in a
lower-dimensional space such that the resulting
dissimilarities A are as close as possible to the original
dissimilarities.

D Aij ~ Aij; for all Z,j
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Stress function ii

= The stress function is defined as

Stress(A;r):\l by (B = Bi)*

where
= w;; are nonnegative weights;
= cis a normalising constant.
= Note that the stress function depends on both the
dimension r of the lower space and the distances A.
» Goal: Find points in R" such that their similarities
minimise the stress function.
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Sammon’s Nonlinear Mapping

= The stress function is

Stress Z T,
ij

z:l,z<]

where
n
= 3 Ay
i=1,i<j
= We don’t make any assumption on the dissimilarities A,
but we assume that A arises from the Euclidean distance
in R".
= This makes the minimisation problem easier and
amenable to Newton's method.
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library (MASS)

Delta <- dist(swiss)
mds <- sammon(Delta, k = 2)

## Initial stress : 0.01959
## stress after 0 iters: 0.01959
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plot (mds$points)
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Example i
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# Fit for different wvalues of k
stresses <- sapply(seq(2, 10),
function(k) {
sammon (Delta, k = k,
trace = FALSE)$stress
)
plot(seq(2, 10), stresses, type = 'b')
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library(scatterplot3d)
mds <- sammon(Delta, k = 3)

## Initial stress : 0.00243
## stress after 10 iters: 0.00095, magic = 0.500
## stress after 20 iters: 0.00094, magic = 0.500

scatterplot3d(mds$points,
xlab = "MDS1", ylab = "MDS2",
zlab = "MDS3")
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Kruskal’'s Nonmetric MDS

= Kruskal's approach is based on ranks.
= In other words: instead of finding points in R" with
similar distances, his method tries to preserve the relative
ordering of the dissimilarities.
= The most dissimilar points in R? should be represented
by the most dissimilar points in R", but the actual
magnitude is irrelevant.
= This is achieved by allowing a monotone transformation f
of the dissimilarities. We thus get
5 (f(Ay) — Aij)Q

Stress(A;r) = J izl’iqn -
Zi=17i<j Aij
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Example (cont’'d) i

mds_s <- sammon(Delta, k = 2)

## Initial stress : 0.01959
## stress after 0 iters: 0.01959

mds_k <- isoMDS(Delta, k = 2)
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Example (cont’d) ii

## initial value 5.463800
## iter 5 value 4.499103
## iter 5 value 4.495335
## iter 5 value 4.492669
## final value 4.492669

## converged

par (mfrow = c(1, 2))

plot(mds_s$points, main = "Sammon",
xlab = "MDS1", ylab = "MDS2")

plot(mds_k$points, main = "Kruskal",
xlab = "MDS1", ylab = "MDS2")
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Example (cont’d)
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Example (cont’d) iv

# Sammon and Kruskal have different
# optimal k
stresses <- sapply(seq(2, 10),
function(k) {
isoMDS(Delta, k = k,
trace = FALSE)$stress

i)

plot(seq(2, 10), stresses, type = 'b')
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Example (cont’d) v
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Example (cont’d) vi

mds_opt_s <- sammon(Delta, k = 3,
trace = FALSE)
mds_opt_k <- isoMDS(Delta, k = 6,
trace = FALSE)

# Let's cluster in the MDS space

2)
2)

cluster_s <- kmeans(mds_opt_s$points, centers

cluster_k <- kmeans(mds_opt_k$points, centers
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Example (cont’d) vii

par (mfrow = c(1, 2))

plot(mds_s$points, main = "Sammon",
xlab = "MDS1", ylab = "MDS2",
col = cluster_s$cluster)

plot(mds_k$points, main = "Kruskal",
xlab = "MDS1", ylab = "MDS2",

col = cluster_k$cluster)
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Example (cont’d) viii
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Example (cont’d) ix

# More interestingly, you can use MDS to
# cluster data where you only have distances
stresses <- sapply(seq(2, 6),
function(k) {
isoMDS(as.matrix(cities),
k =k,
trace = FALSE)$stress
)
plot(seq(2, 6), stresses, type = 'b')
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Example (cont’d) x
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Example (cont’d) xi

mds cities <- isoMDS(as.matrix(cities), k = 6,
trace = FALSE)
cluster_cities <- kmeans(mds_cities$points,

centers = 2)

plot(mds_cities$points, main = "Kruskal",
xlab = "MDS1", ylab = "MDS2",
type = 'n')

text (mds_cities$points, colnames(cities),

col = cluster cities$cluster)
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Example (cont’d) x
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» Multidimensional scaling is mainly a method for
visualising multivariate data.

» It works by finding points in a lower dimensional space
with similar dissimilarities than the one on the original
space.

» It only requires a matrix of dissimilarities

= Therefore, it allows us to visualise data with limited
information.

= MDS is an example of a nonlinear dimension
reduction method.
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