Multivariate Normal Distribution

Max Turgeon

STAT 4690-Applied Multivariate Analysis

Building the multivariate density i

Let $Z \sim N(0,1)$ be a standard (univariate) normal random variable. Recall that its density is given by

$$\phi(z) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{1}{2}z^2\right).$$

Now if we take $Z_1,\dots,Z_p\sim N(0,1)$ independently distributed, their joint density is

Building the multivariate density i

$$\phi(z_1, \dots, z_p) = \prod_{i=1}^p \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{1}{2}z_i^2\right)$$
$$= \frac{1}{(\sqrt{2\pi})^p} \exp\left(-\frac{1}{2}\sum_{i=1}^p z_i^2\right)$$
$$= \frac{1}{(\sqrt{2\pi})^p} \exp\left(-\frac{1}{2}\mathbf{z}^T\mathbf{z}\right),$$

where $\mathbf{z} = (z_1, \dots, z_p)$.

• More generally, let $\mu \in \mathbb{R}^p$ and let Σ be a $p \times p$ positive definite matrix.

Building the multivariate density iii

- Let $\Sigma = LL^T$ be the Cholesky decomposition for Σ .
- Let $\mathbf{Z} = (Z_1, \dots, Z_p)$ be a standard (multivariate) normal random vector, and define $\mathbf{Y} = L\mathbf{Z} + \mu$. We know from last lecture that
 - $E(\mathbf{Y}) = LE(\mathbf{Z}) + \mu = \mu;$
 - $Cov(\mathbf{Y}) = LCov(\mathbf{Z})L^T = \Sigma.$
- To get the density, we need to compute the inverse transformation:

$$\mathbf{Z} = L^{-1}(\mathbf{Y} - \mu).$$

Building the multivariate density iv

• The Jacobian matrix J for this transformation is simply L^{-1} , and therefore

$$\begin{split} |\mathrm{det}(J)| &= |\mathrm{det}(L^{-1})| \\ &= \mathrm{det}(L)^{-1} \qquad (L \text{ is p.d.}) \\ &= \sqrt{\mathrm{det}(\Sigma)}^{-1} \\ &= \mathrm{det}(\Sigma)^{-1/2}. \end{split}$$

Building the multivariate density v

 Plugging this into the formula for the density of a transformation, we get

$$f(y_1, \dots, y_p) = \frac{1}{\det(\Sigma)^{1/2}} \phi(L^{-1}(\mathbf{y} - \mu))$$

$$= \frac{1}{\det(\Sigma)^{1/2}} \left(\frac{1}{(\sqrt{2\pi})^p} \exp\left(-\frac{1}{2} (L^{-1}(\mathbf{y} - \mu))^T L^{-1}(\mathbf{y} - \mu)\right) \right)$$

$$= \frac{1}{\det(\Sigma)^{1/2} (\sqrt{2\pi})^p} \exp\left(-\frac{1}{2} (\mathbf{y} - \mu)^T (LL^T)^{-1} (\mathbf{y} - \mu)\right)$$

$$= \frac{1}{\sqrt{(2\pi)^p |\Sigma|}} \exp\left(-\frac{1}{2} (\mathbf{y} - \mu)^T \Sigma^{-1} (\mathbf{y} - \mu)\right).$$

Example i

```
set.seed(123)

n <- 1000; p <- 2
Z <- matrix(rnorm(n*p), ncol = p)

mu <- c(1, 2)
Sigma <- matrix(c(1, 0.5, 0.5, 1), ncol = 2)
L <- t(chol(Sigma))</pre>
```

Example ii

```
Y \leftarrow L \% * (Z) + mu
Y \leftarrow t(Y)
colMeans(Y)
## [1] 1.016128 2.044840
cov(Y)
               [,1] \qquad [,2]
##
## [1,] 0.9834589 0.5667194
## [2,] 0.5667194 1.0854361
```

Example iii

```
library(tidyverse)
Y %>%
  data.frame() %>%
  ggplot(aes(X1, X2)) +
  geom_density_2d()
```

Example iv

Example v

```
library(mvtnorm)
Y <- rmvnorm(n, mean = mu, sigma = Sigma)
colMeans(Y)
## [1] 0.9812102 1.9829380
cov(Y)
```

Example vi

```
## [,1] [,2]
## [1,] 0.9982835 0.4906990
## [2,] 0.4906990 0.9489171

Y %>%
   data.frame() %>%
   ggplot(aes(X1, X2)) +
   geom_density_2d()
```

Example vii

Other characterizations

There are at least two other ways to define the multivariate random distribution:

- 1. A p-dimensional random vector \mathbf{Y} is said to have a multivariate normal distribution if and only if every linear combination of \mathbf{Y} has a *univariate* normal distribution.
- 2. A p-dimensional random vector \mathbf{Y} is said to have a multivariate normal distribution if and only if its distribution maximises entropy over the class of random vectors with fixed mean μ and fixed covariance matrix Σ and support over \mathbb{R}^p .

Useful properties i

• If $\mathbf{Y} \sim N_p(\mu, \Sigma)$, A is a $q \times p$ matrix, and $b \in \mathbb{R}^q$, then

$$A\mathbf{Y} + b \sim N_q(A\mu + b, A\Sigma A^T).$$

- If $\mathbf{Y} \sim N_p(\mu, \Sigma)$ then all subsets of \mathbf{Y} are normally distributed; that is, write
 - $\bullet \quad \mathbf{Y} = \begin{pmatrix} \mathbf{Y}_1 \\ \mathbf{Y}_2 \end{pmatrix}, \ \mu = \begin{pmatrix} \mu_1 \\ \mu_2 \end{pmatrix};$

 - Then $\mathbf{Y}_1 \sim N_r(\mu_1, \Sigma_{11})$ and $\mathbf{Y}_2 \sim N_{p-r}(\mu_2, \Sigma_{22})$.

Useful properties ii

- Assume the same partition as above. Then the following are equivalent:
 - \mathbf{Y}_1 and \mathbf{Y}_2 are independent;
 - $\Sigma_{12} = 0$;
 - $\bullet \quad \operatorname{Cov}(\mathbf{Y}_1, \mathbf{Y}_2) = 0.$

Exercise (J&W 4.3)

Let $(Y_1, Y_2, Y_3) \sim N_3(\mu, \Sigma)$ with $\mu = (3, 1, 4)$ and

$$\Sigma = \begin{pmatrix} 1 & -2 & 0 \\ -2 & 5 & 0 \\ 0 & 0 & 2 \end{pmatrix}.$$

Which of the following random variables are independent? Explain.

- 1. Y_1 and Y_2 .
- 2. Y_2 and Y_3 .
- 3. (Y_1, Y_2) and Y_3 .
- 4. $0.5(Y_1 + Y_2)$ and Y_3 .
- 5. Y_2 and $Y_2 \frac{5}{2}Y_1 Y_3$.

Conditional Normal Distributions i

■ Theorem: Let $\mathbf{Y} \sim N_p(\mu, \Sigma)$, where

$$\bullet \quad \mathbf{Y} = \begin{pmatrix} \mathbf{Y}_1 \\ \mathbf{Y}_2 \end{pmatrix}, \ \mu = \begin{pmatrix} \mu_1 \\ \mu_2 \end{pmatrix};$$

■ Then the *conditional distribution* of \mathbf{Y}_1 given $\mathbf{Y}_2 = y_2$ is multivariate normal $N_r(\mu_{1|2}, \Sigma_{1|2})$, where

$$\mu_{1|2} = \mu_1 + \Sigma_{12} \Sigma_{22}^{-1} (y_2 - \mu_2)$$

Conditional Normal Distributions ii

■ Corrolary: Let $\mathbf{Y}_2 \sim N_{p-r}(\mu_2, \Sigma_{22})$ and assume that \mathbf{Y}_1 given $\mathbf{Y}_2 = y_2$ is multivariate normal $N_r(Ay_2 + b, \Omega)$, where Ω does not depend on y_2 . Then

$$\mathbf{Y} = egin{pmatrix} \mathbf{Y}_1 \\ \mathbf{Y}_2 \end{pmatrix} \sim N_p(\mu, \Sigma)$$
 , where

$$\bullet \quad \mu = \begin{pmatrix} A\mu_2 + b \\ \mu_2 \end{pmatrix};$$

Exercise

• Let $\mathbf{Y}_2 \sim N_1(0,1)$ and assume

$$\mathbf{Y}_1 \mid \mathbf{Y}_2 = y_2 \sim N_2 \left(\begin{pmatrix} y_2 + 1 \\ 2y_2 \end{pmatrix}, I_2 \right).$$

Find the joint distribution of $(\mathbf{Y}_1, \mathbf{Y}_2)$.

Another important result i

- Let $\mathbf{Y} \sim N_p(\mu, \Sigma)$, and let $\Sigma = LL^T$ be the Cholesky decomposition of Σ .
- We know that $\mathbf{Z} = L^{-1}(\mathbf{Y} \mu)$ is normally distributed, with mean 0 and covariance matrix

$$Cov(\mathbf{Z}) = L^{-1}\Sigma(L^{-1})^T = I_p.$$

- Therefore $(\mathbf{Y} \mu)^T \Sigma^{-1} (\mathbf{Y} \mu)$ is the sum of *squared* standard normal random variables.
 - In other words, $(\mathbf{Y} \mu)^T \Sigma^{-1} (\mathbf{Y} \mu) \sim \chi^2(p)$.
 - This can be seen as a generalization of the univariate result $\left(\frac{X-\mu}{\sigma}\right)^2 \sim \chi^2(1).$

Another important result ii

From this, we get a result about the probability that a multivariate normal falls within an *ellipse*:

$$P\left((\mathbf{Y} - \mu)^T \Sigma^{-1} (\mathbf{Y} - \mu) \le \chi^2(\alpha; p)\right) = 1 - \alpha.$$

 We can use this to construct a confidence region around the sample mean.