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Building the multivariate density i

= Let Z ~ N(0,1) be a standard (univariate) normal
random variable. Recall that its density is given by

o(z) = \/12_7Texp <—;,22) :

= Now if we take Z;,...,Z, ~ N(0,1) independently
distributed, their joint density is



Building the multivariate density ii
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where z = (21,...,2,).
= More generally, let 4 € RP and let > be a p X p positive
definite matrix.



Building the multivariate density iii

= Let ¥ = LLT be the Cholesky decomposition for X.
= Let Z=(Z,...,Z,) be a standard (multivariate) normal
random vector, and define Y = LZ + p. We know from
last lecture that
» E(Y)=LE(Z)+p=y;
= Cov(Y) = LCov(Z)LT = 3.
= To get the density, we need to compute the inverse
transformation:

Z =LY —p).



Building the multivariate density iv

» The Jacobian matrix J for this transformation is simply
L~ and therefore

|det(J)] = [det(L™)|
= det(L)™* (Lis p.d.)

=il

= y/det(X)
= det(X)"1/2,



Building the multivariate density v

» Plugging this into the formula for the density of a
transformation, we get

Flyr, - yp) = det(lz)l/zcb(ﬁl(y — )
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= mexp <—2(y —p) X (y — M)) .
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set.seed(123)

n <- 1000; p <- 2

Z <- matrix(rnorm(n*p), ncol = p)

mu <- c(1, 2)
Sigma <- matrix(c(1, 0.5, 0.5, 1), ncol = 2)
L <- t(chol(Sigma))



Y <- L %*% t(Z) + mu
Y <- t(Y)

colMeans (Y)

## [1] 1.016128 2.044840

cov(Y)

#it [,1] [,2]
## [1,] 0.9834589 0.5667194
## [2,] 0.5667194 1.0854361



library(tidyverse)

Y %h>%
data.frame() %>%
ggplot (aes(X1, X2)) +
geom_density_2d()
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library(mvtnorm)
Y <- rmvnorm(n, mean = mu, sigma = Sigma)
colMeans (Y)

## [1] 0.9812102 1.9829380

cov(Y)
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#it [,1] [,2]
## [1,] 0.9982835 0.4906990
## [2,] 0.4906990 0.9489171

Y %>%
data.frame() %>%
ggplot(aes(X1, X2)) +
geom_density_2d()
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Other characterizations

There are at least two other ways to define the multivariate
random distribution:

1. A p-dimensional random vector Y is said to have a
multivariate normal distribution if and only if every linear
combination of Y has a univariate normal distribution.

2. A p-dimensional random vector Y is said to have a
multivariate normal distribution if and only if its
distribution maximises entropy over the class of random
vectors with fixed mean p and fixed covariance matrix X
and support over R?.

14



Useful properties i

= IfY ~ N,(,X), Ais agx pmatrix, and b € R?, then
AY + b~ Ny (Ap + b, ATAT).

» IfY ~ N,(u,X) then all subsets of Y are normally
distributed:; that is, write

H2 ’
= Then Y1 ~ Nr(ﬂh 211) and YQ ~ Np—r(ﬂZ; 222).
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Useful properties ii

= Assume the same partition as above. Then the following
are equivalent:
= Y; and Y, are independent;
= Y9 =0;
= Cov(Yy,Y2) =0.
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Exercise (J&W 4.3)

Let (Y1, Ys,Y3) ~ N3(u, X) with p = (3,1,4) and

1 -2 0
Y=|-2 5
0 0 2
Which of the following random variables are independent?
Explain.
1. Y] and Y5.
2. Y5 and Ys.
3. (Y1,Y2) and V3.
4. 0.5(Y1 +Y3) and Ys.
5. Y; and Y5 — 2V, — V5.
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Conditional Normal Distributions i

= Theorem: Let Y ~ N,(u,X), where

» Then the conditional distribution of Y given Yy = 15 is
multivariate normal N,.(ji1)2, 31j2), where

= e =+ L1285 (Y2 — p2)
s Do = Z11 + 1285 Sor.
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Conditional Normal Distributions ii

= Corrolary: Let Yo ~ N,_, (2, X92) and assume that Y,
given Y, = y, is multivariate normal N,.(Ays + b, ),
where €2 does not depend on y,. Then

Y
Y = ( 1) ~ N, (i, X), where
Y,

(Auz + b) .

12 ’
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Exercise

= Let Yy ~ N;(0,1) and assume

+1
Yl\Y2:y2NN2<(y2 );5)-
290

Find the joint distribution of (Y1,Y>).
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Another important result i

» Let Y ~ N,(i, %), and let 3 = LL” be the Cholesky
decomposition of X.

» We know that Z = L~'(Y — p) is normally distributed,
with mean 0 and covariance matrix

Cov(Z) = L7'2(L ™Y = I,

» Therefore (Y — p)"S7 (Y — p) is the sum of squared
standard normal random variables.

= In other words, (Y — p)TS 1Y — ) ~ x2%(p).
= This can be seen as a generalization of the univariate

result (%)2 ~ x2(1).
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Another important result ii

= From this, we get a result about the probability that a
multivariate normal falls within an ellipse:

P((Y =" (Y = p) < x*a;p)) =1—a

= We can use this to construct a confidence region around
the sample mean.
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