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Joint distributions

= Let X and Y be two random variables.
» The joint distribution function of X and Y is

F(z,y)=P(X <z,Y <y).

= More generally, let Y7,...,Y, be p random variables.
Their joint distribution function is

F(ybayp):P(}/lSylv?}/;?Syp)



Joint densities

» |f F'is absolutely continuous almost everywhere, there
exists a function f called the density such that

Y1 Yp
F(yl,...,yp):/_ /_ flug, ..., up)dug - - - duy.

» The joint moments are defined as follows:

E(Y™ .- YT) =
/ / 1w fun, - up)dug - - duyg,.

= Exercise: Show that this is consistent with the univariate
definition of E(Y{"'), i.e. ng =--- =mn, =0.



Marginal distributions i

» From the joint distribution function, we can recover the
marginal distributions:
E(l’) = y}il)nooF(yh 500 ,y”>.
J#i
= More generally, we can find the joint distribution of a
subset of variables by sending the other ones to infinity:

F(y17"'7y7’):y},i_l;IlooF(y17"'7yn)’ T<p'
J>r



Marginal distributions i

= Similarly, from the joint density function, we can recover
the marginal densities:

fi(z) :/OO f(ul,...,up)dul...@.._dup.

—0oQ0

= |n other words, we are integrating out the other variables.



Conditional distributions

» Let fi, fo be the densities of random variables Y7, Y5,
respectively. Let f be the joint density.
» The conditional density of Y; given Y3 is defined as

f(y1,92)
faly2)

whenever f>(y2) # 0 (otherwise it is equal to zero).

flnly) =

= Similarly, we can define the conditional density in p > 2
variables, and we can also define a conditional density for
Yi,..., Y, given Y.y, ... Y.



Expectations

= Let Y =(Y1,...,Y,) be a random vector.
» Its expectation is defined entry-wise:

E(Y) = (EM),..., BE(Y,)).

= Observation: The dependence structure has no impact
on the expectation.



Covariance and Correlation i

» The multivariate generalization of the variance is the
covariance matrix. It is defined as

Cov(Y) = E ((Y = m)(Y = ") ,

where 1 = E(Y).
= Exercise: The (i,7)-th entry of Cov(Y) is equal to

Cov(Y;,Y;).



Covariance and Correlation ii

Recall that we obtain the correlation from the covariance

by dividing by the square root of the variances.

Let V' be the diagonal matrix whose i-th entry is Var(Y;).
= In other words, V' and Cov(Y) have the same diagonal.

Then we define the correlation matrix as follows:

Corr(Y) = V"2Cov(Y)V 12,

Exercise: The (i, j)-th entry of Corr(Y) is equal to

Corr(Y;, Y;).



= Assume that

4 1 2
Cov(Y)=1[1 9 -3
2 =3 25

= Then we know that
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= Therefore, we can write

05 0 0
v12=1,0 033 0
0 0 02

= We can now compute the correlation matrix:
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05 0 0 4 1 2 05 0 0
0 033 0 1 9 -3 0 033 0
0 0 02/ \2 -3 25 0 0 02

1 017 0.2
017 1 0.2
02 —-02 1
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Measures of Overall Variability

= |n the univariate case, the variance is a scalar measure of
spread.

= |n the multivariate case, the covariance is a matrix.

= No easy way to compare two distributions.

= For this reason, we have other notions of overall
variability:

1. Generalized Variance: This is defined as the
determinant of the covariance matrix.

GV (Y) = det(Cov(Y)).

2. Total Variance: This is defined as the trace of the
covariance matrix.

TV(Y) = tr(Cov(Y)). .



A <- matrix(c(5, 4, 4, 5), ncol = 2)

results <- eigen(A, symmetric = TRUE,
only.values = TRUE)

# Generalized wvariance

prod(results$values)

## [1] 9
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# Total wariance

sum(results$values)

# [1] 10

# Compare this with the following
B <- matrix(c(5, -4, -4, 5), ncol = 2)

# Generalized wvariance
# GUV(A) = 9

det (B)
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## [1] 9

# Total wariance
# TV(4) = 10
sum(diag(B))

## [1] 10
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Measures of Overall Variability (cont’d)

= As we can see, we do lose some information:

= |n matrix B, we saw that the two variables are
negatively correlated, and yet we get the same values

» But GV captures some information on dependence that
TV does not.

= Compare the following covariance matrices:

0 ()

» Interpretation: A small value of the sampled Generalized
Variance indicates either small scatter in data points or

multicollinearity.
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Geometric Interlude i

= A random vector Y with positive definite covariance
matrix 2 can be used to define a distance function on R”:

d(z,y) = \/(x — y)TS 1 (z — y).

» This is called the Mahalanobis distance induced by 3.
» Exercise: This indeed satisfies the definition of a
distance:
1. d(z,y) = d(y, )
2. d(z,y) > 0and d(z,2) =0z =0
3. d(x,2) <d(z,y)+d(y, 2)
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Geometric Interlude ii

= Using this distance, we can construct hyper-ellipsoids in
R? as the set of all points x such that

d(z,0) = 1.

= Equivalently:
TE g = 1.

= Since ¥ 7! is symmetric, we can use the spectral
decomposition to rewrite it as:

P

-1 —1, T

2= N,
i=1

where \i, ..., A\, are the eigenvalues of X.
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Geometric Interlude iii

= We thus get a new parametrization if the hyper-ellipsoid:

P (oTx\?
L = Il
> (%)

» Theorem: The volume of this hyper-ellipsoid is equal to

2mP/2

MV

» In other words, the Generalized Variance is proportional

s Ap-

to the square of the volume of the hyper-ellipsoid defined
by the covariance matrix.

= Note: the square root of the determinant of a matrix (if
it exists) is sometimes called the Pfaffian.
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Sigma <- matrix(c(1, 0.5, 0.5, 1), ncol = 2)

# First create a circle

theta_vect <- seq(0, 2#pi, length.out = 100)
circle <- cbind(cos(theta_vect), sin(theta_vect))
# Then turn into ellipse

ellipse <- circle %*), Sigma
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# Principal azes
result <- eigen(Sigma, symmetric = TRUE)

first <- result$values[1]*result$vectorsl[,1]
second <- result$values[2]*result$vectorsl,2]
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# Plot results
plot(ellipse, type = '1')
lines(x = c(0, first[1]),
y = c(0, first[2]))
c(0, second[1]),
c(0, second[2]))

lines(x

y
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Example (cont’'d) i

# Generalized Variance
det (Sigma)

## [1] 0.75

# Predicted volume of the ellipse above

pi/(gamma (1)) *sqrt(det(Sigma))
## [1] 2.720699
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Example (cont’d) ii

# How can we estimate the area?
# Monte Carlo simulation!

Sigma_inv <- solve(Sigma)

x_1 <- runif (1000, min = min(ellipsel[,1]),
max = max(ellipsel[,1]))

x_2 <- runif (1000, min = min(ellipsel[,2]),
max = max(ellipsel[,2]))

X <- cbind(x_ 1, x 2)
distances <- apply(X, 1, function(row) {
sqrt (t(row) %*% Sigma_inv %*J row)

i)
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Example (cont’d) iii

# Estimate

length x <- diff(range(ellipsel[,1]))
length y <- diff(range(ellipsel[,2]))
area_rect <- length x * length_y

area_rect * mean(distances <= 1)

## [1] 2.679104
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Statistical Independence

= The variables Y7, ...,Y) are said to be mutually
independent if

F(ys, - 49) = F(y1) - F(yp).

= IfY),...,Y, admit a joint density f (with marginal
densities fi, ..., f,), and equivalent condition is

f(ylw-wyp):f(yl)"'f(yp)‘

= Important property: If Y;,... Y, are mutually
independent, then their joint moments factor:

B+ Yr) = B(Y™) -+ B(Y”).
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Linear Combination of Random Variables

» Let Y =(Y3,...,Y],) be arandom vector. Let A be a
q X p matrix, and let b € RY.

= Then the random vector X := AY + b has the following
properties:
= Expectation: E(X) =AE(Y) +b;
= Covariance: Cov(X) = ACov(Y)AT
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Transformation of Random Variables

= More generally, let i : R? — RP? be a one-to-one function
with inverse h~' = (hy', ..., h '), Define X = h(Y).

7D
» Let J be the Jacobian matrix of h=':
onyt oyt
oy1 IYp
ohy, ! ohy !
oy1 AYp

= Then the density of X is given by

g(@1,. - 2p) = F(hT (W), - -, By () et ().

» This result is very useful for computing the density of
transformations of normal random variables.
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Properties of Sample Statistics i

» Let Yy,...,Y, bearandom sample from a p-dimensional
distribution with mean p and covariance matrix X..
= Sample mean: We define the sample mean Y as follows:

» Properties:
» E(Y)=p (i.e. Y is an unbiased estimator of j);
= Cov(Y)=1x.

n
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Properties of Sample Statistics ii

= Sample covariance: We define the sample covariance S
as follows:

» Properties:

» E(S)="1% (i.e. S'is a biased estimator of X);

= If we define S with n instead of n — 1 in the
denominator above, then E(S) =X (i.e. Sis an
unbiased estimator of X).
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