
PageRank Algorithm

Max Turgeon

STAT 4690–Applied Multivariate Analysis

Quick history of search engines i

• At the beginning of times (circa 1995), search engines
mostly ranked web pages based on their content:

• Keywords they contained.
• Link to other pages (i.e. hubs)
• Who’s behind the website

• For example, if I search for “Principal Component
Analysis”, you could score each web page depending on
how often you see the keywords “principal”,
“component”, “analysis”, and you could increase the
weight for websites from statisticians, or for websites on
general statistical concepts.

2

Quick history of search engines ii

• In contrast, the PageRank algorithm proposes to look at
other pages to understand how important a given web
page is.

3

Motivation i

• The PageRank algorithm gives a score PRi to each web
page.

• This score depends on how often page i is linked to from
a page j.

• We’ll write j → i to say that web page j links to web
page i.

4

Motivation ii

• The score follows the two following rules:
• Being linked to from an important web page should

count more. In other words, PRi should be proportional
to PRj .

• Being linked to from a web page that has many, many
links, should count less. In other words, PRi should be
inversely proportional to the number of links mj going
out of page j.

5

First version of the algorithm

• Let’s look at a first attempt to implementing such a
scoring rule.

• We’ll see later that it doesn’t quite work…
• We use a recursive definition:

PRi =
∑
j→i

PRj

mj

.

• If we let Lij be equal to 1 if j → i and 0 otherwise, we
can rewrite this as:

PRi =
n∑

j=1

Lij

mj

PRj.

6

Example i

(Lmat <- matrix(c(0, 0, 1, 0, 1, 0, 0, 0,
1, 1, 0, 1, 0, 0, 0, 0), ncol = 4,

byrow = TRUE))

[,1] [,2] [,3] [,4]
[1,] 0 0 1 0
[2,] 1 0 0 0
[3,] 1 1 0 1
[4,] 0 0 0 0

7

Example ii

Alternatively
library(igraph)
edge_list <- c(c("A", "B"), c("A", "C"), c("B", "C"),

c("C", "A"), c("D", "C"))
graph <- graph_from_edgelist(
matrix(edge_list, ncol = 2,

byrow = TRUE)
)

plot(graph)

8

Example iii

A

B

C

D

9

Example iv

m_vect <- colSums(Lmat)
Initialize
pr_vect <- rep(0.25, 4)
for (i in seq_len(4)) {

pr_vect[i] <- sum(Lmat[i,]*pr_vect/m_vect)
}
pr_vect

[1] 0.250 0.125 0.500 0.000

10

Example v

Repeat 5 more times
for(count in seq_len(5)) {
for (i in seq_len(4)) {

pr_vect[i] <- sum(Lmat[i,]*pr_vect/m_vect)
}

}
pr_vect

[1] 0.50 0.25 0.50 0.00

11

Matrix notation

• Let p = (PR1, . . . , PRn), let L be the matrix whose
(i, j)-th entry is Lij, and let M be the diagonal matrix
whose i diagonal element is mi.

• Then, we can write the equations PRi = ∑n
j=1

Lij

mj
PRj

for all i as
p = LM−1p.

• In other words, we can find the vector of scores by finding
the eigenvector corresponding to eigenvalue 1 (if it
exists!).

12

Example (cont’d) i

Amat <- Lmat %*% diag(1/m_vect)
decomp <- eigen(Amat)
decomp$values

[1] 1.0+0.0i -0.5+0.5i -0.5-0.5i 0.0+0.0i

Re(decomp$vectors[,1])

[1] -0.6666667 -0.3333333 -0.6666667 0.0000000

13

Example (cont’d) ii

Which is proportional to what we found
pr_vect

[1] 0.50 0.25 0.50 0.00

Re(decomp$vectors[,1])/-(4/3)

[1] 0.50 0.25 0.50 0.00

14

Comment

• We have an intuitive definition of the score.
• Even if its recursive, we can still compute the score

• Either through an iterative process.
• Or as an eigenvector problem.

• But the solution is not very satisfactory on our example:
• Looking at the graph, page C seems the most important.
• But our solution gives page A as the most important.

15

Markov chains i

• To gain more insight into this problem, it’s helpful to
rephrase it as a discrete Markov process.

• Each web page is one of the states of the Markov chain.
• Imagine a random surfer, i.e. someone is randomly (and

uniformly) go from one web page to another by following
links.

• For simplicity, assume that a given web page as at most
one link to another one.

16

Markov chains ii

• Then the probability of going from page i to j in one step
is given by

Pij = P (landing on j | currently on i) =


1

mi
if i → j

0 else
.

• Since each column of the matrix P sums to 1, it follows
that e = (1, . . . , 1) is an eigenvector of P T with
eigenvalue 1.

• Therefore, 1 is also an eigenvalue of P and there exists
a vector p such that Pp = p.

17

Strongly connected Markov chains

• We say is a Markov chain is strongly connected (or
irreducible) if you can get from any state from any other
state.

• For strongly connected Markov chains, the stationary
distribution exists and is unique.

• Unfortunately, our random surfer model does not lead to
a strongly connected Markov chain in general:

• You may have clusters of pages that do not link to one
another.

• You may have pages without outgoing links.

18

Second version of the algorithm i

• We will modify the random surfer model to create a
strongly connected Markov chain.

• They will either click randomly on a link or randomly
jump to another page (without clicking a link.)

• Let 0 < d < 1 be a constant, and define

Pij = P (landing on j | currently on i) =


1−d

n
+ d

mi
if i → j

1−d
n

else
.

19

Second version of the algorithm ii

• In matrix form: let L, M be as above, let P be as we just
redefined, and let E be the n × n matrix containing only
1s. Then we are looking for a vector p of scores such that

p =
(

(1 − d)
n

E + dLM−1
)

p.

20

Example (cont’d) i

d <- 0.85
n <- length(m_vect)
Amat <- (1 - d) * matrix(1, ncol = n, nrow = n)/n +

d * Lmat %*% diag(1/m_vect)
decomp <- eigen(Amat)
decomp$values

[1] 1.000000e+00+0.00e+00i -4.250000e-01+4.25e-01i -4.250000e-01-4.25e-01i
[4] -1.422971e-17+0.00e+00i

Re(decomp$vectors[,1])

21

Example (cont’d) ii

[1] -0.64470397 -0.33889759 -0.68212419 -0.06489841

page_rank(graph, damping = 0.85)$vector

A B C D
0.3725269 0.1958239 0.3941492 0.0375000

Re(decomp$vectors[,1])/(sum(Re(decomp$vectors[,1])))

[1] 0.3725269 0.1958239 0.3941492 0.0375000

22

Twitter example i

• Data comes from Stanford Network Analysis Project.
• Downloaded from

https://eecs490.github.io/project-
pagerank/index.html

• It is data about connections between Twitter accounts
• Who follows whom.

• I’ve randomly selected 10,000 nodes and only kept edges
for which both nodes are in this subset.

23

https://eecs490.github.io/project-pagerank/index.html
https://eecs490.github.io/project-pagerank/index.html

Twitter example ii

library(tidyverse)
url <- paste0("https://raw.githubusercontent.com/",

"turgeonmaxime/twitter_pagerank_STAT4690/",
"master/edge_list_subset.csv")

edge_sub <- read_csv(url) %>%
mutate(Node_Id_1 = as.character(Node_Id_1),

Node_Id_2 = as.character(Node_Id_2)) %>%
as.matrix()

24

Twitter example iii

graph_twitter <- graph_from_edgelist(edge_sub)

plot(graph_twitter, vertex.label = NA,
vertex.size = 2, edge.arrow.size = 0.5)

25

Twitter example iv

26

Twitter example v

PageRank algorithm
PR_vect <- page_rank(graph_twitter)$vector

Visualize scores
library(colorspace)
quartiles <- quantile(PR_vect,

probs = seq(0, 1, length.out=5))
colours <- cut(PR_vect, breaks = quartiles,

labels = sequential_hcl(4),
include.lowest = TRUE)

27

Twitter example vi

plot(graph_twitter, vertex.label = NA,
vertex.size = 2, edge.arrow.size = 0.5,
vertex.color = as.character(colours))

28

Twitter example vii

29

