Principal Component Analysis
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Population PCA i

PCA: Principal Component Analysis

= Dimension reduction method:
= Let Y = (Y7,...,Y),) be a random vector with
covariance matrix Y. We are looking for a
transformation h : RP — R*, with k < p such that h(Y)
retains “as much information as possible” about Y.
= In PCA, we are looking for a linear transformation
h(y) = w!y with maximal variance (where ||w| = 1)
= More generally, we are looking for k linear
transformations wy, ..., wy such that ijY has maximal
variance and is uncorrelated with w{Y,... v |Y.



Population PCA ii

= First, note that Var(w?Y) = w!Sw. So our
optimisation problem is

maxw’ Yw, with wlw = 1.
w

» From the theory of Lagrange multipliers, we can look at
the unconstrained problem

max w’ Lw — AM(wlw — 1).

w,A



Population PCA iii

= Write ¢(w, A) for the function we are trying to optimise.

We have
8(?11¢(w’ A) = ;waEw — MwTw —1)
= 2Yw — 2 \w;
E> (w,\) = wlw — 1.

= From the first partial derivative, we conclude that

Yw = \w.



Population PCA iv

» From the second partial derivative, we conclude that
w # 0; in other words, w is an eigenvector of ¥ with
eigenvalue \.

= Moreover, at this stationary point of ¢(w, \), we have

Var(w?Y) = v’ Yw = w’ (Aw) = dwTw = A

= In other words, to maximise the variance Var(w?Y), we
need to choose \ to be the largest eigenvalue of X

= By induction, and using the extra constraints w! w; = 0,
we can show that all other linear transformations are
given by eigenvectors of X..



Population PCA v

PCA Theorem
Let Ay > --- > A, be the eigenvalues of X, with corresponding

unit-norm eigenvectors wy, ..., w,. To reduce the dimension
of Y from p to k such that every component of WY is
uncorrelated and each direction has maximal variance, we can
take W = (w1 wk), whose j-th column is w;.



Properties of PCA i

= Some vocabulary:
= 7, = wiTY is called the i-th principal component of Y.
= wj is the i-th vector of loadings.
= Note that we can take k& = p, in which case we do not
reduce the dimension of Y, but we transform it into a
random vector with uncorrelated components.
= Let ¥ = PAPT be the eigendecomposition of . We
have

Xp:\/ar(wiTY) =) N=tr(A) =tr(X) = iVar(Yi).

i=1 i=1



Properties of PCA ii

» Therefore, each linear transformation w! Y contributes
Ai/ >; Aj as percentage of the overall variance.

= Selecting k: One common strategy is to select a
threshold (e.g. ¢ = 0.9) such that

k

i1 i

: > c.
=1 A




Scree plot

= A scree plot is a plot with the sequence 1,...,p on the
x-axis, and the sequence \;,..., A\, on the y-axis.

= Another common strategy for selecting k is to choose the
point where the curve starts to flatten out.

= Note: This inflection point does not necessarily exist,
and it may be hard to identify.
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Correlation matrix

= When the observations are on the different scale, it is
typically more appropriate to normalise the components
of Y before doing PCA.
= The variance depends on the units, and therefore
without normalising, the component with the “smallest”
units (e.g. centimeters vs. meters) could be driving most
of the overall variance.
» In other words, instead of using ¥, we can use the
(population) correlation matrix R.
= Note: The loadings and components we obtain from X
are not equivalent to the ones obtained from R.
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Sample PCA

= In general, we do not the population covariance matrix .

» Therefore, in practice, we estimate the loadings w;
through the eigenvectors of the sample covariance matrix
Shn-

= As with the population version of PCA, if the units are
different, we should normalise the components or use the

sample correlation matrix.
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Example 1 i

library(mvtnorm)
Sigma <- matrix(c(1, 0.5, 0.1,
0.5, 1, 0.5,
0.1, 0.5, 1),
ncol = 3)

set.seed(17)

X <- rmvnorm(100, sigma = Sigma)

pca <- prcomp (X)
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Example 1 ii

summary (pca)

## Importance of components:

## PC1 PC2 PC3
## Standard deviation 1.4994 0.9457 0.6009
## Proportion of Variance 0.6417 0.2552 0.1031
## Cumulative Proportion 0.6417 0.8969 1.0000

screeplot(pca, type = '1')
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Example 1
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Example 2 i

pca <- prcomp(USArrests, scale = TRUE)
summary (pca)

## Importance of components:

## PC1 PC2 PC3 PC:
## Standard deviation 1.5749 0.9949 0.59713 0.4164!
## Proportion of Variance 0.6201 0.2474 0.08914 0.0433
## Cumulative Proportion 0.6201 0.8675 0.95664 1.0000
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Example 2 ii

screeplot(pca, type = '1')
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Example 2
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Applications of PCA
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Training and testing i

= Recall: Mean Squared Error

MSE = LS (v, - V2,

N5

where Yi,f/i are the observed and predicted values.
» It is good practice to separate your dataset in two:
= Training dataset, that is used to build and fit your
model (e.g. choose covariates, estimate regression
coefficients).
= Testing dataset, that it used to compute the MSE or
other performance metrics.
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Training and testing i

= PCA can be used for predictive model building in
(univariate) linear regression:

= Feature extraction: Perform PCA on the covariates,
extract the first £ PCs, and use them as predictors in
your model.

= Feature selection: Perform PCA on the covariates,
look at the first PC, find the covariates whose loadings
are the largest (in absolute value), and only use those
covariates as predictors.
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Feature Extraction i

library(ElemStatLearn)

library(tidyverse)
train <- subset(prostate, train == TRUE,
select = -train)

test <- subset(prostate, train == FALSE,

select = -train)

# First model: Linear regression

lr model <- 1m(lpsa ~ ., data = train)

lr pred <- predict(lr_model, newdata = test)
(1r_mse <- mean((test$lpsa - 1lr_pred) ~2))
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Feature Extraction ii

## [1] 0.521274

# PCA
decomp <- train %>%
-lpsa) %>%

subset (select
as.matrix() %>%
prcomp

summary (decomp) $importance[,1:3]
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Feature Extraction iii

## PC1 PC2 PC3
## Standard deviation 29.40597 7.211721 1.410789
## Proportion of Variance 0.93844 0.056440 0.002160
## Cumulative Proportion  0.93844 0.994890 0.997050

screeplot (decomp, type = 'lines')
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Feature Extraction iv
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Feature Extraction v

# Second model: PCs for predictors
train_pc <- train

train_pc$PCl <- decomp$x[,1]

pc_model <- 1lm(lpsa ~ PC1l, data = train_pc)

test_pc <- as.data.frame(predict(decomp, test))
pc_pred <- predict(pc_model,

newdata = test_pc)
(pc_mse <- mean((test$lpsa - pc_pred) ~2))

## [1] 0.9552741
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Feature Selection i

contribution <- decomp$rotation[,"PC1"]

round (contribution, 3)[1:6]

## lcavol lweight age lbph svi lcp
## 0.021 0.001 0.075 -0.001 0.007 0.032

round(contribution, 3) [7:8]

## gleason  pggdb
## 0.018 0.996
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Feature Selection ii

(keep <- names(which(abs(contribution) > 0.01)))

## [1] "lcavol" T"age" "lcp" "gleason" "pgg4b"

fs_model <- 1m(lpsa ~ ., data = train[,c(keep, "lpsa")
fs_pred <- predict(fs_model, newdata = test)
(fs_mse <- mean((test$lpsa - fs_pred)~2))

## [1] 0.5815571
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Feature Selection iii

model plot <- data.frame(
"obs" = test$lpsa,
"LR" = l1lr_pred,
"PC" = pc_pred,
"FS" = fs_pred
) h>%
gather (Model, pred, -obs)
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Feature Selection iv

ggplot (model plot,
aes(pred, obs, colour = Model)) +
geom_point() +
theme_minimal() +
geom_abline(slope = 1, intercept = 0) +
theme (legend.position = 'top') +
xlab("Predicted") + ylab("Observed")
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Feature Selection v

Model FS e LR = PC

Observed

Predicted
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Comments

= The full model performed better than the ones we created
with PCA

= |t had a lower MSE

= On the other hand, if we had multicollinearity issues, or
too many covariates (p > n), the PCA models could
outperform the full model.

= However, note that PCA does not use the association
between the covariates and the outcome, so it will never
be the most efficient way of building a model.
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Data Visualization i

library(dslabs)
mnist <- read_mnist()
dim(mnist$train$images)

## [1] 60000 784

dim(mnist$test$images)

## [1] 10000 784
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Data Visualization ii

head(mnist$train$labels)

## [11 50419 2
matrix(mnist$train$images[1,], ncol = 28) %>

image(col = gray.colors(12, rev = TRUE),
axes = FALSE)
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Data Visualization iii
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Data Visualization iv

decomp <- prcomp(mnist$train$images)

screeplot (decomp, type = 'lines',

npcs = 20, main = "")
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Data Visualization vi

decomp$x[,1:2] %>%
as.data.frame() %>%
mutate(label = factor(mnist$train$labels)) %>%
ggplot (aes(PC1, PC2, colour = label)) +
geom_point(alpha = 0.5) +

theme_minimal ()
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Data Visualization viii

# And on the test set

decomp %>%
predict (newdata = mnist$test$images) %>%
as.data.frame() %>%
mutate(label = factor(mnist$test$labels)) %>%
ggplot(aes(PC1, PC2, colour = label)) +
geom_point(alpha = 0.5) +
theme_minimal ()
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Data Visualization x

par (mfrow = c(2, 2))
for (i in seq_len(4)) {
matrix(decomp$rotation[,i], ncol = 28) %>%
image(col = gray.colors(12, rev = TRUE),
axes = FALSE, main = pasteO("PC", 1))
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Data Visualization xi
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Data Visualization xii

# Approxzimation with 90 PCs

approx_mnist <- decomp$rotation[, seq_len(90)] %x*J
decomp$x[1, seq_len(90)]

par (mfrow = c(1, 2))

matrix(mnist$train$images[1,], ncol = 28) %>%
image(col = gray.colors(12, rev = TRUE),
axes = FALSE, main = "Original")
matrix(approx_mnist, ncol = 28) %>/
image(col = gray.colors(12, rev = TRUE),
axes = FALSE, main = "Approx")
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Data Visualization xiii
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Additional comments about sample PCA i

» Let Yyi,...,Y, be asample from a distribution with
covariance matrix Y. Write Y for the n X p matrix whose
i-th row is Y.

= Let S,, be the sample covariance matrix, and write W, for
the matrix whose columns are the first k& eigenvectors of
Shp-

= You can define the matrix of & principal components as

Z =YWy
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Additional comments about sample PCA ii

= On the other hand, it is much more common to define it
as

Z =YW;,

where Y is the centered version of Y (i.e. the sample
mean has been subtracted from each row).

= This leads to sample principal components with mean
zero.
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Example 1 (revisited) i

library(mvtnorm)
Sigma <- matrix(c(1, 0.5, 0.1,
0.5, 1, 0.5,
0.1, 0.5, 1),
ncol = 3)
mu <- c(1, 2, 2)
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Example 1 (revisited) ii

set.seed(17)
X <- rmvnorm(100, mean = mu,
sigma = Sigma)

pca <- prcomp (X)

colMeans (X)

## [1] 0.8789229 2.0517403 2.0965127

colMeans (pca$x)
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Example 1 (revisited) iii

#i# PC1 PC2 PC3
## -6.169544e-17 5.433154e-17 9.228729e-18

# On the other hand

pca <- prcomp(X, center = FALSE)

colMeans (pca$x)

#i#t PC1 PC2 PC3
## 3.058960918 0.142358612 0.001050088
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Geometric interpretation of PCA i

= The definition of PCA as a linear combination that
maximises variance is due to Hotelling (1933).

» But PCA was actually introduced earlier by Pearson
(1901)

= On Lines and Planes of Closest Fit to Systems of Points
in Space

» He defined PCA as the best approximation of the
data by a linear manifold

» Let's suppose we have a lower dimension representation
of Y, denoted by a n x k matrix Z.
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Geometric interpretation of PCA ii

= We want to reconstruct Y using an affine transformation
f(Z) =p + sza

where Wy is a p X k matrix.
» We want to find u, Wy, Z; that minimises the
reconstruction error:

min ZHY p— WiZi||?.

Wi, 2,

52



Geometric interpretation of PCA iii

= First, treating W}, constant and minimising over p, Z;, we
find

||
= =

fi
Zi E(Y -Y).

» Putting these quantities into the reconstruction error, we
get

IIVIViIlZ (Y = Y) = W, W, (Y; = Y)|*
=

53



Geometric interpretation of PCA iv

Eckart—Young theorem
The reconstruction error is minimised by taking W to be the

matrix whose columns are the first k eigenvectors of the

sampling covariance matrix S,,.

Equivalently, we can take the matrix whose columns are the
first k right singular vectors or the centered data matrix Y.
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set.seed(1234)
# Random measurement error

sigma <- b

# Ezact relationship between
# Celsius and Fahrenheit
temp_c <- seq(-40, 40, by = 1)
temp f <- 1.8*temp_c + 32
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# Add measurement error

temp_c_noise <- temp_c + rnorm(n = length(temp _c),
sd = sigma)

temp_f noise <- temp_f + rnorm(n = length(temp f),
sd = sigma)

# Linear model

(fit <- 1lm(temp_f noise ~ temp_c_noise))
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##

## Call:

## 1m(formula = temp f noise ~ temp_c_noise)
#it

## Coefficients:

## (Intercept) temp_c_noise

## 34.256 1.662

confint (fit)
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#it 2.5% 97.5 %
## (Intercept) 32.152891 36.35921
## temp_c_noise 1.577228 1.74711

# PCA

pca <- prcomp(cbind(temp_c_noise, temp_f noise))
pca$rotation

## PC1 PC2

## temp_c_noise 0.5012360 -0.8653106
## temp_f noise 0.8653106 0.5012360
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pca$rotation[2,"PC1"]/pca$rotation[l,"PC1"]

## [1] 1.726354
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Large sample inference i

= |f we impose distributional assumptions on the data Y,
we can derive the sampling distributions of the sample
principal components.

» Assume Y ~ N, (1, X), with ¥ positive definite. Let
A1 > -+ > ), be the eigenvalues of ¥; in particular we
assume they are distinct. Finally let wy, ..., w, be the
corresponding eigenvectors.

= Given a random sample of size n, let S,, be the sample

covariance matrix, Aq,..., A, its eigenvalues, and
Wy, ..., W, the corresponding eigenvectors.
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Large sample inference ii

= Define A to be the diagonal matrix whose entries are
A1, ..., Ap, and define
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Large sample inference iii

Asymptotic results

1. Write A = (\1,...,)\,) and similarly for X. As n — oo,

we have
Vi (A= X) = N,(0,24%).

2. As n — oo, we have

3. Each 3\2 is distributed independently of ;.
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Comments i

» These results only apply to principal components derived
from the covariance matrix.
= Some asymptotic results are available for those derived
from the correlation matrix, but we will not cover them
in class.
= Asymptotically, all eigenvalues of S, are independent.
= You can get a confidence interval for \; as follows:

~ ~

<A< :
(14 2a/2/2/n) (1= zas2¢/2/n)
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Comments ii

= Use Bonferroni correction if you want Cls that are
simultaneously valid for all eigenvalues.
= The matrices §2; have rank p — 1, and therefore they are
singular.
= The entries of 0, are correlated, and this correlation
depends on the separation between the eigenvalues.

= Good separation = smaller correlation
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library(dslabs)
library(ggridges)

# Data on Breast Cancer
as.data.frame(brca$x) %>%
gather (variable, measurement) %>’
mutate(variable = reorder(variable, measurement,
median)) %>%
ggplot (aes(x = measurement, y = variable)) +
geom_density_ridges() + theme_ridges() +

coord_cartesian(xlim = c(0, 250))
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# Remove some wvariables
rem_index <- which(colnames(brca$x) %in
c("area_worst", "area mean",

"perimeter_worst",
"perimeter _mean"))

dataset <- brca$x[,-rem_index]

decomp <- prcomp(dataset)

summary (decomp) $importance[,1:3]

67



## PC1 PC2 PC3
## Standard deviation 45.78445 7.281664 3.677815
## Proportion of Variance 0.96776 0.024480 0.006240
## Cumulative Proportion  0.96776 0.992240 0.998490

screeplot (decomp, type = 'l')
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# Let's put a CI around the first eigenvalue
first_ev <- decomp$sdev[1]~2

n <- nrow(dataset)

# Recall that TV = 2166

c("LB" = first_ev/(1+qnorm(0.975) *sqrt(2/n)),
"Est." = first_ev,
"UP" = first_ev/(1-qnorm(0.975)*sqrt(2/n)))

#it LB Est. UP
## 1877.992 2096.216 2371.822
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Simulations i

B <- 1000; n <- 100; p <- 3

results <- purrr::map_df(seq_len(B), function(b) {
X <- matrix(rnorm(p*n, sd = sqrt(c(1l, 2, 3))),
ncol = p, byrow = TRUE)
tmp <- eigen(cov(X), symmetric = TRUE,
only.values = TRUE)

tibble(evl = tmp$values[1],
ev2 = tmp$values([2],
ev3 = tmp$values([3])

i)
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Simulations ii

results %>%
gather(ev, value) %>%
ggplot (aes(value, fill = ev)) +
geom_density(alpha = 0.5) +
theme_minimal() +
geom_vline(xintercept = c(1, 2, 3),

linetype = 'dashed')
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Simulations
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Simulations iv

results %>%

summarise_all (mean)

## # A tibble: 1 x 3

## evl ev2 ev3
##  <dbl> <dbl> <dbl>
## 1 3.09 1.95 0.963
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Simulations v

p <- 2
results <- purrr::map_df(seq_len(B), function(b) {
X <- matrix(rnorm(p*n, sd = c(1, 2)), ncol = p,
byrow = TRUE)
tmp <- eigen(cov(X), symmetric = TRUE)

tibble(
xend = tmp$vectors[1,1],
yend = tmp$vectors([2,1]
)

i9)
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Simulations vi

results %>
ggplot () +
geom_segment (aes(xend = xend, yend = yend),
x =0, y =0, colour = 'grey60') +
geom_segment(x = 0, xend = 0,
y =0, yend = 1,
colour = 'blue', size = 2) +
expand_limits(y = 0, x = c(-1, 1)) +

theme_minimal ()
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Simulations vii
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Simulations viii

# Or looking at angles
results %>%
transmute(theta = atan2(yend, xend)) %>%
ggplot(aes(theta)) +
geom_histogram() +
theme_minimal () +

geom_vline(xintercept = pi/2)
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Simulations
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Test for structured covariance i

= The asymptotic results above assumed distinct
eigenvalues.

» But we may be interested in structured covariance
matrices; for example:

L p - p
20—0‘2 s b 2
p p ) 1

» This is called an exchangeable correlation structure.
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Test for structured covariance i

= Assuming p > 0, the eigenvalues of ¥, are

M=0’(1+(p—1)p),
Ag = 02(1 - 10)7

A =21 —p).
= Let's assume 02 = 1. We are interested in testing

whether the correlation matrix is equal to ;.
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Test for structured covariance iii

= Let 7, = 15 D77, i i be the average of the
off-diagonal value of the k-th column of the sample
correlation matrix.

w letr = p(TQ—U > i<;Tij be the average of all off-diagonal
elements (we are only looking at entries below the

diagonal).

(p—1)?[1-(1-7)?]

p—(p—2)(1-7)2 *

= We reject the null hypothesis that the correlation matrix

= Finally, let 4 =

is equal to X if

(n—1)

T S = 97 =4 X0 = 72| > X+ D o-2)/2

1<J k=1
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# Keep only mean measurements
rem_index2 <- grep('"mean", colnames(brca$x),
invert = TRUE)
dataset <- brca$x[,-c(rem_index,
rem_index2)]
R <- cor(dataset)

pairs(dataset)

83



10 20 30 40 005 020 035 000 010 020 005 007 009

°% %4 &
radius_mean o o
i o @ © 2 o o
8 M e
2
&3
o o500 S
oo ° 2 compactness_mean X
5 9 e °

10 20

014

006

005 025

3
o 3
o
Ld concavity_mean o]
L)
- g o2,
4 o2 0o ®
concave_pis_mean
> o
o >
0 g
088 o0 §o < Josf 8
symmery_mean o
o © 2 ©
g
&0

fractal_dim_mean

005 008

0 2 006 010 014 00

84



# Overall mean
r_bar <- mean(R[upper.tri(R, diag = FALSE)])

# Column spectific means
r_cols <- (colSums(R) - 1)/(nrow(R) - 1)

# Extra quantities

p <- ncol(dataset)

n <- nrow(dataset)

gamma_hat <- (p - 1)72%x(1 - (1 - r_bar)~2)/
(p - (p - 2)x(1 - r_bar)~2)
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# Test statistic
Tstat <- sum((R[upper.tri(R,
diag = FALSE)] - r_bar)~2) -
gamma_hat*sum((r_cols - r_bar)~2)
Tstat <- (n-1)*Tstat/(1-r_bar) 2

Tstat > qchisq(0.95, 0.5%(p+1)*(p-2))

## [1] TRUE
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Selecting the number of PCs i

» We already discussed two strategies for selecting the
number of principal components:
= Look at the scree plot and find where the curve starts to
be flat;
= Retain as many PCs as required to explain the desired

proportion of variance.
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Selecting the number of PCs ii

= There is a vast literature on different strategies for
selecting the number of components. Two good
references:
= Peres-Neto et al. (2005) How many principal
components? stopping rules for determining the number
of non-trivial axes revisited
= Jolliffe (2012) Principal Component Analysis (2nd ed)
= We will discuss one more technique based on resampling.
» The idea is to try to estimate the distribution of
eigenvalues if there was no correlation between the
variables.
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Selecting the number of PCs iii

Algorithm

1. Permute the observations of each column
independently.

2. Perform PCA on the permuted data.

3. Repeat B times and collect the eigenvalues ng), e ,/A\g’).

4. Keep the components whose observed i is greater than
(1 — )% of the values \\” obtained through

permutations.
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Example (cont’'d) i

decomp <- prcomp(dataset)

summary (decomp) $importance[,seq_len(3)]

## PC1 PC2 PC3
## Standard deviation 4.60806 3.112611 0.07664969
## Proportion of Variance 0.68654 0.313240 0.00019000
## Cumulative Proportion 0.68654 0.999780 0.99997000
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Example (cont’d) ii

screeplot (decomp, type = 'l1')
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Example (cont’d)
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Example (cont’d) iv

permute_data <- function(data) {
p <- ncol(data)
data_perm <- data
for (i in seq_len(p)) {
ind_sc <- sample(nrow(data))
data_perm[,i] <- datal[ind_sc, il
}

return(data_perm)
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Example (cont’d) v

set.seed(123)

B <- 1000

alpha <- 0.05

results <- matrix(NA, ncol = B,

nrow = ncol(dataset))

results[,1] <- decomp$sdev

results[,-1] <- replicate(B - 1, {
data_perm <- permute_data(dataset)
prcomp (data_perm) $sdev

D
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Example (cont’d) vi

cutoff <- apply(results, 1, function(row) {
mean (row >= rowl[1])

D
which(cutoff < alpha)

## [1] 1
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= In our example with the MNIST dataset, we plotted the
first principal component against the second component.
= This gave us a sense of how much discriminatory ability
each PC gave us.
= E.g. the first PC separated 1s from 0Os
» What was missing from that plot was how the PCs were
related to the original variables.
= A biplot is a graphical display of both the original
observations and original variables together on one
scatterplot.
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= The prefix “bi" refers to two modalities

(i.e. observations and variables), not to two dimensions.
= One approach to biplots relies on the Eckart-Young
theorem:

= The “best” 2-dimensional representation of the data
passes through the plane containing the first two
eigenvectors of the sample covariance matrix.
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Construction

» Let Y be the n x p matrix of centered data, and let
wy, ..., w, be the p eigenvectors of Y''Y.

» For each row Y, of Y, add the point (wlTYZ-,wQTYZ-) to
the plot.

» The j-th column of Y is represented by an arrow from
the origin to the point (wy;, wy;).

= It may be necessary to rescale the PCs and/or the
loadings in order to see the relationship better.
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Example (cont’'d) i

# Continuing with our example on breast cancer

decomp <- prcomp(dataset)

# Extract PCs and loadings

PCs <- decomp$x[, 1:2]

loadings <- decomp$rotation[, 1:2]
# Extract data on tumour type

colour <- ifelse(brca$y == "B", "black", 'blue')
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Example (cont’d) ii

par (mfrow = c(1,2))
plot(PCs, pch = 19, col = colour)
plot(loadings, type = 'n')
text (loadings,
labels = colnames(dataset),
col = 'red')
arrows(0, 0, 0.9 * loadings[, 1],
0.9 * loadings[, 2],
col = 'red',
length = 0.1)
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Example (cont’d)
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Example (cont’d) iv

# Or both on the same plot
plot (PCs, pch = 19, col = colour)
text (loadings,
labels = colnames(dataset),
col = 'red')
arrows(0, 0, 0.9 * loadings[, 1],
0.9 * loadings[, 2],
col = 'red',
length = 0.1)
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Example (cont’d) v
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Example (cont’d) vi

# The biplot function rescales for us

biplot (decomp)
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mple (cont’d)
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Example (cont’d) viii

# With scaled data
biplot (prcomp(dataset, scale = TRUE))
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Example (cont’d)
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Summary of graphical displays

= When we plot the first PC against the second PC, we are
looking for similarity between observations.
= When we plot the first loading against the second loading,
we are looking for similarity between variables.
= Orthogonal loadings = Uncorrelated variables
= Obtuse angle between loadings = Negative correlation
= A biplot combines both pieces of information.
= You can think of it as a projection of the p-dimensional
scatter plot (points and axes) onto a 2-dimensional
plane.
= A scree plot displays the amount of variation in each
principal component.
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