## **Principal Component Analysis**

Max Turgeon

STAT 4690-Applied Multivariate Analysis

## Population PCA i

- PCA: Principal Component Analysis
- Dimension reduction method:
  - Let  $\mathbf{Y}=(Y_1,\ldots,Y_p)$  be a random vector with covariance matrix  $\Sigma$ . We are looking for a transformation  $h:\mathbb{R}^p\to\mathbb{R}^k$ , with  $k\ll p$  such that  $h(\mathbf{Y})$  retains "as much information as possible" about  $\mathbf{Y}$ .
- In PCA, we are looking for a linear transformation  $h(y) = w^T y$  with maximal variance (where ||w|| = 1)
- More generally, we are looking for k linear transformations  $w_1, \ldots, w_k$  such that  $w_j^T \mathbf{Y}$  has maximal variance and is uncorrelated with  $w_1^T \mathbf{Y}, \ldots, w_{j-1}^T \mathbf{Y}$ .

## Population PCA ii

• First, note that  $Var(w^T\mathbf{Y}) = w^T\Sigma w$ . So our optimisation problem is

$$\max_{w} w^T \Sigma w, \quad \text{with } w^T w = 1.$$

 From the theory of Lagrange multipliers, we can look at the unconstrained problem

$$\max_{w,\lambda} w^T \Sigma w - \lambda (w^T w - 1).$$

## Population PCA iii

• Write  $\phi(w,\lambda)$  for the function we are trying to optimise. We have

$$\frac{\partial}{\partial w}\phi(w,\lambda) = \frac{\partial}{\partial w}w^T \Sigma w - \lambda(w^T w - 1)$$
$$= 2\Sigma w - 2\lambda w;$$
$$\frac{\partial}{\partial \lambda}\phi(w,\lambda) = w^T w - 1.$$

From the first partial derivative, we conclude that

$$\Sigma w = \lambda w$$
.

## Population PCA iv

- From the second partial derivative, we conclude that  $w \neq 0$ ; in other words, w is an eigenvector of  $\Sigma$  with eigenvalue  $\lambda$ .
- Moreover, at this stationary point of  $\phi(w,\lambda)$ , we have

$$Var(w^T \mathbf{Y}) = w^T \Sigma w = w^T (\lambda w) = \lambda w^T w = \lambda.$$

- In other words, to maximise the variance  $Var(w^T\mathbf{Y})$ , we need to choose  $\lambda$  to be the *largest* eigenvalue of  $\Sigma$ .
- By induction, and using the extra constraints  $w_i^T w_j = 0$ , we can show that all other linear transformations are given by eigenvectors of  $\Sigma$ .

## Population PCA v

#### **PCA Theorem**

Let  $\lambda_1 \geq \cdots \geq \lambda_p$  be the eigenvalues of  $\Sigma$ , with corresponding unit-norm eigenvectors  $w_1, \ldots, w_p$ . To reduce the dimension of  $\mathbf{Y}$  from p to k such that every component of  $W^T\mathbf{Y}$  is uncorrelated and each direction has maximal variance, we can take  $W = \begin{pmatrix} w_1 & \cdots & w_k \end{pmatrix}$ , whose j-th column is  $w_j$ .

## Properties of PCA i

- Some vocabulary:
  - $\mathbf{Z}_i = w_i^T \mathbf{Y}$  is called the *i*-th **principal component** of  $\mathbf{Y}$ .
  - $w_i$  is the *i*-th vector of **loadings**.
- Note that we can take k = p, in which case we do not reduce the dimension of Y, but we transform it into a random vector with uncorrelated components.
- Let  $\Sigma = P\Lambda P^T$  be the eigendecomposition of  $\Sigma$ . We have

$$\sum_{i=1}^{p} \operatorname{Var}(w_i^T \mathbf{Y}) = \sum_{i=1}^{p} \lambda_i = \operatorname{tr}(\Lambda) = \operatorname{tr}(\Sigma) = \sum_{i=1}^{p} \operatorname{Var}(Y_i).$$

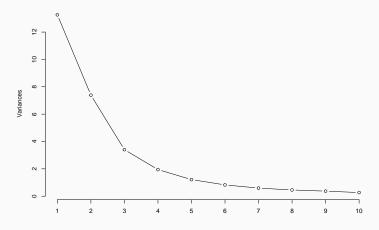
## Properties of PCA ii

- Therefore, each linear transformation  $w_i^T \mathbf{Y}$  contributes  $\lambda_i / \sum_i \lambda_i$  as percentage of the overall variance.
- Selecting k: One common strategy is to select a threshold (e.g. c=0.9) such that

$$\frac{\sum_{i=1}^{k} \lambda_i}{\sum_{i=1}^{p} \lambda_i} \ge c.$$

## Scree plot

- A scree plot is a plot with the sequence 1, ..., p on the x-axis, and the sequence  $\lambda_1, ..., \lambda_p$  on the y-axis.
- Another common strategy for selecting k is to choose the point where the curve starts to flatten out.
  - Note: This inflection point does not necessarily exist, and it may be hard to identify.



#### **Correlation matrix**

- When the observations are on the different scale, it is typically more appropriate to normalise the components of Y before doing PCA.
  - The variance depends on the units, and therefore without normalising, the component with the "smallest" units (e.g. centimeters vs. meters) could be driving most of the overall variance.
- In other words, instead of using  $\Sigma$ , we can use the (population) correlation matrix R.
- Note: The loadings and components we obtain from  $\Sigma$  are **not** equivalent to the ones obtained from R.

## Sample PCA

- In general, we do not the population covariance matrix  $\Sigma$ .
- Therefore, in practice, we estimate the loadings  $w_i$  through the eigenvectors of the sample covariance matrix  $S_n$ .
- As with the population version of PCA, if the units are different, we should normalise the components or use the sample correlation matrix.

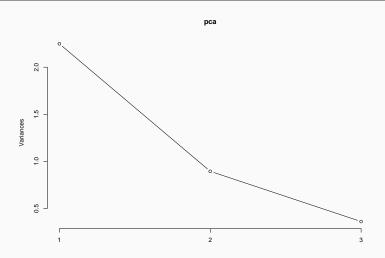
## Example 1 i

```
library(mvtnorm)
Sigma <- matrix(c(1, 0.5, 0.1,
                    0.5, 1, 0.5,
                    0.1, 0.5, 1),
                 ncol = 3)
set.seed(17)
X <- rmvnorm(100, sigma = Sigma)</pre>
pca <- prcomp(X)</pre>
```

## Example 1 ii

```
summary(pca)
## Importance of components:
                            PC1 PC2
                                         PC3
##
## Standard deviation 1.4994 0.9457 0.6009
## Proportion of Variance 0.6417 0.2552 0.1031
## Cumulative Proportion 0.6417 0.8969 1.0000
screeplot(pca, type = 'l')
```

# Example 1 iii



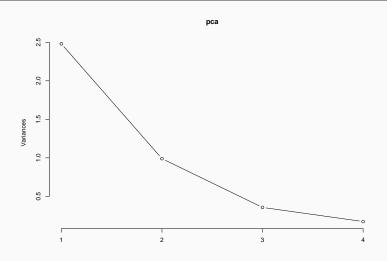
### Example 2 i

```
pca <- prcomp(USArrests, scale = TRUE)</pre>
summary(pca)
## Importance of components:
                                   PC2
                                          PC3
                                                    PC4
##
                             PC1
## Standard deviation 1.5749 0.9949 0.59713 0.4164
## Proportion of Variance 0.6201 0.2474 0.08914 0.0433
## Cumulative Proportion 0.6201 0.8675 0.95664 1.00000
```

# Example 2 ii

```
screeplot(pca, type = 'l')
```

# Example 2 iii



# **Applications of PCA**

# Training and testing i

Recall: Mean Squared Error

$$MSE = \frac{1}{n} \sum_{i=1}^{n} (Y_i - \hat{Y}_i)^2,$$

where  $Y_i, \hat{Y}_i$  are the *observed* and *predicted* values.

- It is good practice to separate your dataset in two:
  - Training dataset, that is used to build and fit your model (e.g. choose covariates, estimate regression coefficients).
  - Testing dataset, that it used to compute the MSE or other performance metrics.

## Training and testing ii

- PCA can be used for predictive model building in (univariate) linear regression:
  - Feature extraction: Perform PCA on the covariates, extract the first k PCs, and use them as predictors in your model.
  - Feature selection: Perform PCA on the covariates, look at the first PC, find the covariates whose loadings are the largest (in absolute value), and only use those covariates as predictors.

### Feature Extraction i

```
library(ElemStatLearn)
library(tidyverse)
train <- subset(prostate, train == TRUE,
                 select = -train)
test <- subset(prostate, train == FALSE,
                 select = -train)
# First model: Linear regression
lr model <- lm(lpsa ~ ., data = train)</pre>
lr pred <- predict(lr model, newdata = test)</pre>
(lr mse <- mean((test$lpsa - lr pred)^2))</pre>
```

### Feature Extraction ii

## [1] 0.521274

prcomp

```
# PCA
decomp <- train %>%
  subset(select = -lpsa) %>%
  as.matrix() %>%
```

summary(decomp)\$importance[,1:3]

### Feature Extraction iii

```
## PC1 PC2 PC3

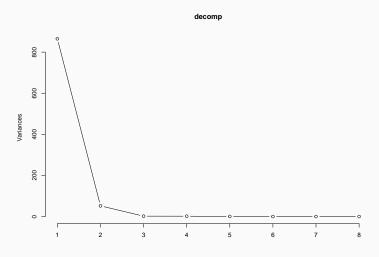
## Standard deviation 29.40597 7.211721 1.410789

## Proportion of Variance 0.93844 0.056440 0.002160

## Cumulative Proportion 0.93844 0.994890 0.997050
```

```
screeplot(decomp, type = 'lines')
```

## Feature Extraction iv



### Feature Extraction v

```
# Second model: PCs for predictors
train pc <- train
train pc$PC1 <- decomp$x[,1]
pc model <- lm(lpsa ~ PC1, data = train pc)</pre>
test pc <- as.data.frame(predict(decomp, test))</pre>
pc pred <- predict(pc model,</pre>
                    newdata = test pc)
(pc mse <- mean((test$lpsa - pc pred)^2))
## [1] 0.9552741
```

### Feature Selection i

```
contribution <- decomp$rotation[,"PC1"]</pre>
round(contribution, 3)[1:6]
## lcavol lweight
                            lbph svi
                                            lcp
                     age
## 0.021 0.001 0.075 -0.001 0.007 0.032
round(contribution, 3)[7:8]
## gleason
           pgg45
## 0.018
            0.996
```

#### Feature Selection ii

```
(keep <- names(which(abs(contribution) > 0.01)))
## [1] "lcavol" "age" "lcp" "gleason" "pgg45"
fs model <- lm(lpsa ~ ., data = train[,c(keep, "lpsa")]
fs pred <- predict(fs model, newdata = test)</pre>
(fs mse <- mean((test$lpsa - fs pred)^2))</pre>
## [1] 0.5815571
```

### Feature Selection iii

```
model_plot <- data.frame(
   "obs" = test$lpsa,
   "LR" = lr_pred,
   "PC" = pc_pred,
   "FS" = fs_pred
) %>%
   gather(Model, pred, -obs)
```

#### Feature Selection iv

## Feature Selection v



#### **Comments**

- The full model performed better than the ones we created with PCA
  - It had a lower MSE
- On the other hand, if we had multicollinearity issues, or too many covariates (p > n), the PCA models could outperform the full model.
- However, note that PCA does not use the association between the covariates and the outcome, so it will never be the most efficient way of building a model.

### Data Visualization i

## [1] 10000

784

```
library(dslabs)
mnist <- read_mnist()</pre>
dim(mnist$train$images)
## [1] 60000
                784
dim(mnist$test$images)
```

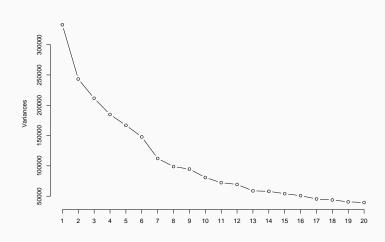
### Data Visualization ii

## Data Visualization iii



### Data Visualization iv

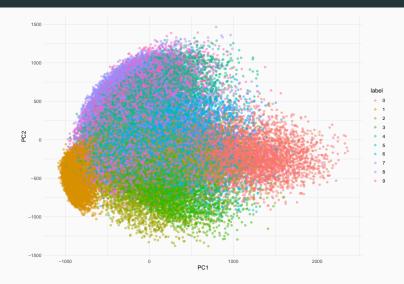
#### Data Visualization v



#### Data Visualization vi

```
decomp$x[,1:2] %>%
  as.data.frame() %>%
  mutate(label = factor(mnist$train$labels)) %>%
  ggplot(aes(PC1, PC2, colour = label)) +
  geom_point(alpha = 0.5) +
  theme_minimal()
```

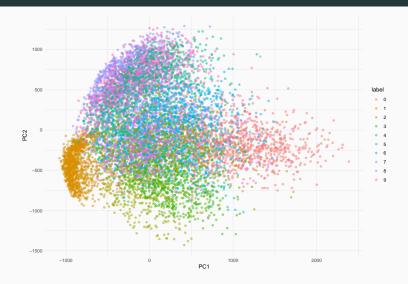
#### Data Visualization vii



#### Data Visualization viii

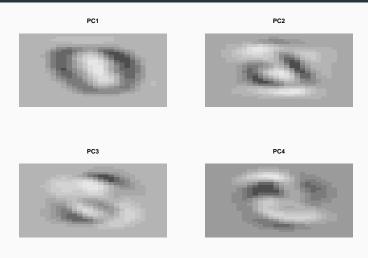
```
# And on the test set
decomp %>%
  predict(newdata = mnist$test$images) %>%
  as.data.frame() %>%
  mutate(label = factor(mnist$test$labels)) %>%
  ggplot(aes(PC1, PC2, colour = label)) +
  geom_point(alpha = 0.5) +
  theme_minimal()
```

### Data Visualization ix



#### Data Visualization x

### Data Visualization xi



#### Data Visualization xii

```
# Approximation with 90 PCs
approx mnist <- decomp$rotation[, seq_len(90)] %*%
 decomp$x[1, seq len(90)]
par(mfrow = c(1, 2))
matrix(mnist$train$images[1,], ncol = 28) %>%
  image(col = gray.colors(12, rev = TRUE),
        axes = FALSE, main = "Original")
matrix(approx mnist, ncol = 28) %>%
  image(col = gray.colors(12, rev = TRUE),
        axes = FALSE, main = "Approx")
```

## Data Visualization xiii





## Additional comments about sample PCA i

- Let  $\mathbf{Y}_1, \ldots, \mathbf{Y}_n$  be a sample from a distribution with covariance matrix  $\Sigma$ . Write  $\mathbb{Y}$  for the  $n \times p$  matrix whose i-th row is  $\mathbf{Y}_i$ .
- Let  $S_n$  be the sample covariance matrix, and write  $W_k$  for the matrix whose columns are the first k eigenvectors of  $S_n$ .
- ullet You can define the matrix of k principal components as

$$\mathbb{Z} = \mathbb{Y}W_k$$
.

## Additional comments about sample PCA in

 On the other hand, it is much more common to define it as

$$\mathbb{Z} = \tilde{\mathbb{Y}}W_k,$$

where  $\tilde{\mathbb{Y}}$  is the centered version of  $\mathbb{Y}$  (i.e. the sample mean has been subtracted from each row).

 This leads to sample principal components with mean zero.

# Example 1 (revisited) i

# Example 1 (revisited) ii

```
set.seed(17)
X <- rmvnorm(100, mean = mu,
              sigma = Sigma)
pca <- prcomp(X)</pre>
colMeans(X)
## [1] 0.8789229 2.0517403 2.0965127
colMeans(pca$x)
```

# Example 1 (revisited) iii

```
## PC1 PC2 PC3
## -6.169544e-17 5.433154e-17 9.228729e-18

# On the other hand
pca <- prcomp(X, center = FALSE)
colMeans(pca$x)</pre>
```

```
## PC1 PC2 PC3
## 3.058960918 0.142358612 0.001050088
```

## Geometric interpretation of PCA i

- The definition of PCA as a linear combination that maximises variance is due to Hotelling (1933).
- But PCA was actually introduced earlier by Pearson (1901)
  - On Lines and Planes of Closest Fit to Systems of Points in Space
- He defined PCA as the best approximation of the data by a linear manifold
- Let's suppose we have a lower dimension representation of  $\mathbb{Y}$ , denoted by a  $n \times k$  matrix  $\mathbb{Z}$ .

## Geometric interpretation of PCA ii

 $\blacksquare$  We want to  $\textit{reconstruct}~\mathbb{Y}$  using an affine transformation

$$f(z) = \mu + W_k z,$$

where  $W_k$  is a  $p \times k$  matrix.

• We want to find  $\mu, W_k, \mathbf{Z}_i$  that minimises the reconstruction error:

$$\min_{\mu, W_k, \mathbf{Z}_i} \sum_{i=1}^n \|\mathbf{Y}_i - \mu - W_k \mathbf{Z}_i\|^2.$$

# Geometric interpretation of PCA iii

• First, treating  $W_k$  constant and minimising over  $\mu, \mathbf{Z}_i$ , we find

$$\hat{\boldsymbol{\mu}} = \bar{\mathbf{Y}},$$

$$\hat{\mathbf{Z}}_i = W_k^T (\mathbf{Y}_i - \bar{\mathbf{Y}}).$$

Putting these quantities into the reconstruction error, we get

$$\min_{W_k} \sum_{i=1}^n \| (\mathbf{Y}_i - \bar{\mathbf{Y}}) - W_k W_k^T (\mathbf{Y}_i - \bar{\mathbf{Y}}) \|^2.$$

## Geometric interpretation of PCA iv

#### **Eckart-Young theorem**

The reconstruction error is minimised by taking  $W_k$  to be the matrix whose columns are the first k eigenvectors of the sampling covariance matrix  $S_n$ .

Equivalently, we can take the matrix whose columns are the first k right singular vectors or the centered data matrix  $\tilde{\mathbb{Y}}$ .

## Example i

```
set.seed(1234)
# Random measurement error
sigma <- 5

# Exact relationship between
# Celsius and Fahrenheit
temp_c <- seq(-40, 40, by = 1)
temp_f <- 1.8*temp_c + 32</pre>
```

### Example ii

```
# Linear model
(fit <- lm(temp_f_noise ~ temp_c_noise))</pre>
```

## Example iii

confint(fit)

```
##
## Call:
## lm(formula = temp_f_noise ~ temp_c_noise)
##
## Coefficients:
## (Intercept) temp_c_noise
## 34.256 1.662
```

## Example iv

```
2.5 % 97.5 %
##
## (Intercept) 32.152891 36.35921
## temp c noise 1.577228 1.74711
# PCA
pca <- prcomp(cbind(temp c noise, temp f noise))</pre>
pca$rotation
##
                      PC1
                                 PC2
## temp c noise 0.5012360 -0.8653106
```

## temp f noise 0.8653106 0.5012360

## Example v

```
pca$rotation[2,"PC1"]/pca$rotation[1,"PC1"]
```

## [1] 1.726354

## Large sample inference i

- If we impose distributional assumptions on the data Y, we can derive the sampling distributions of the sample principal components.
- Assume  $\mathbf{Y} \sim N_p(\mu, \Sigma)$ , with  $\Sigma$  positive definite. Let  $\lambda_1 > \cdots > \lambda_p$  be the eigenvalues of  $\Sigma$ ; in particular we assume they are *distinct*. Finally let  $w_1, \ldots, w_p$  be the corresponding eigenvectors.
- Given a random sample of size n, let  $S_n$  be the sample covariance matrix,  $\hat{\lambda}_1, \ldots, \hat{\lambda}_p$  its eigenvalues, and  $\hat{w}_1, \ldots, \hat{w}_p$  the corresponding eigenvectors.

# Large sample inference ii

• Define  $\Lambda$  to be the diagonal matrix whose entries are  $\lambda_1, \ldots, \lambda_p$ , and define

$$\Omega_i = \lambda_i \sum_{k=1, k \neq i}^p \frac{\lambda_k}{(\lambda_k - \lambda_i)^2} w_k w_k^T.$$

# Large sample inference iii

#### **Asymptotic results**

1. Write  $\lambda = (\lambda_1, \dots, \lambda_p)$  and similarly for  $\hat{\lambda}$ . As  $n \to \infty$ , we have

$$\sqrt{n}\left(\hat{\boldsymbol{\lambda}}-\boldsymbol{\lambda}\right)\to N_p(0,2\Lambda^2).$$

2. As  $n \to \infty$ , we have

$$\sqrt{n} (\hat{w}_i - w_i) \to N_p(0, \Omega_i).$$

3. Each  $\hat{\lambda}_i$  is distributed independently of  $\hat{w}_i$ .

#### Comments i

- These results only apply to principal components derived from the covariance matrix.
  - Some asymptotic results are available for those derived from the correlation matrix, but we will not cover them in class.
- Asymptotically, all eigenvalues of  $S_n$  are independent.
- You can get a confidence interval for  $\lambda_i$  as follows:

$$\frac{\hat{\lambda}_i}{(1+z_{\alpha/2}\sqrt{2/n})} \le \lambda_i \le \frac{\hat{\lambda}_i}{(1-z_{\alpha/2}\sqrt{2/n})}.$$

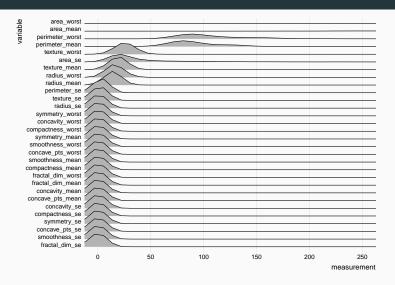
#### Comments ii

- Use Bonferroni correction if you want Cls that are simultaneously valid for all eigenvalues.
- The matrices  $\Omega_i$  have rank p-1, and therefore they are singular.
- The entries of  $\hat{w}_i$  are correlated, and this correlation depends on the *separation* between the eigenvalues.
  - lacksquare Good separation  $\Longrightarrow$  smaller correlation

### Example i

```
library(dslabs)
library(ggridges)
# Data on Breast Cancer
as.data.frame(brca$x) %>%
  gather(variable, measurement) %>%
 mutate(variable = reorder(variable, measurement,
                            median)) %>%
  ggplot(aes(x = measurement, y = variable)) +
  geom density ridges() + theme ridges() +
  coord cartesian(xlim = c(0, 250))
```

### Example ii



## Example iii

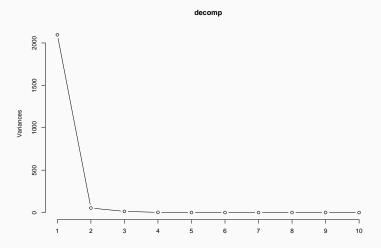
```
# Remove some variables
rem index <- which(colnames(brca$x) %in%
                      c("area worst", "area mean",
                         "perimeter worst",
                         "perimeter mean"))
dataset <- brca$x[,-rem index]</pre>
decomp <- prcomp(dataset)</pre>
summary(decomp)$importance[,1:3]
```

### Example iv

```
## Standard deviation 45.78445 7.281664 3.677815 ## Proportion of Variance 0.96776 0.024480 0.006240 ## Cumulative Proportion 0.96776 0.992240 0.998490
```

```
screeplot(decomp, type = 'l')
```

# Example v



## Example vi

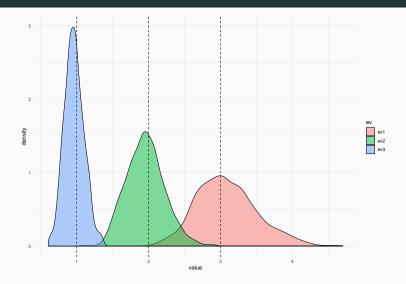
```
# Let's put a CI around the first eigenvalue
first ev <- decomp$sdev[1]^2
n <- nrow(dataset)</pre>
# Recall that TV = 2166
c("LB" = first ev/(1+qnorm(0.975)*sqrt(2/n)),
  "Est." = first ev,
  "UP" = first ev/(1-qnorm(0.975)*sqrt(2/n))
##
        LB
                Est.
                           UP
## 1877.992 2096.216 2371.822
```

#### Simulations i

```
B <- 1000; n <- 100; p <- 3
results <- purrr::map df(seq len(B), function(b) {
    X \leftarrow matrix(rnorm(p*n, sd = sqrt(c(1, 2, 3))),
                 ncol = p, byrow = TRUE)
    tmp <- eigen(cov(X), symmetric = TRUE,</pre>
                  only.values = TRUE)
    tibble(ev1 = tmp$values[1],
           ev2 = tmp$values[2],
            ev3 = tmp$values[3])
})
```

#### Simulations ii

## Simulations iii



### Simulations iv

##

ev1 ev2 ev3

```
results %>%
  summarise_all(mean)

## # A tibble: 1 x 3
```

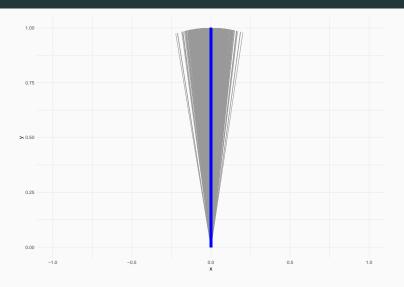
### Simulations v

```
p < -2
results <- purrr::map_df(seq_len(B), function(b) {
  X \leftarrow matrix(rnorm(p*n, sd = c(1, 2)), ncol = p,
               byrow = TRUE)
  tmp <- eigen(cov(X), symmetric = TRUE)</pre>
  tibble(
    xend = tmp$vectors[1,1],
    yend = tmp$vectors[2,1]
```

### Simulations vi

```
results %>%
 ggplot() +
 geom segment(aes(xend = xend, yend = yend),
               x = 0, y = 0, colour = 'grey60') +
 geom segment(x = 0, xend = 0,
               y = 0, y = 1,
               colour = 'blue', size = 2) +
  expand_limits(y = 0, x = c(-1, 1)) +
 theme_minimal()
```

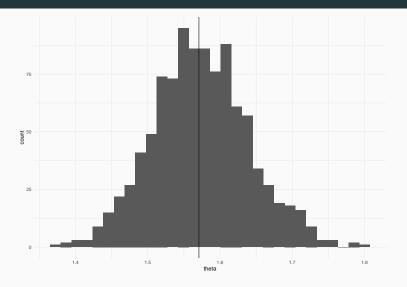
## Simulations vii



### Simulations viii

```
# Or looking at angles
results %>%
  transmute(theta = atan2(yend, xend)) %>%
  ggplot(aes(theta)) +
  geom_histogram() +
  theme_minimal() +
  geom_vline(xintercept = pi/2)
```

## Simulations ix



#### Test for structured covariance i

- The asymptotic results above assumed distinct eigenvalues.
- But we may be interested in *structured* covariance matrices; for example:

$$\Sigma_0 = \sigma^2 \begin{pmatrix} 1 & \rho & \cdots & \rho \\ \rho & 1 & \cdots & \rho \\ \vdots & \vdots & \ddots & \vdots \\ \rho & \rho & \cdots & 1 \end{pmatrix}.$$

This is called an exchangeable correlation structure.

### Test for structured covariance ii

• Assuming  $\rho > 0$ , the eigenvalues of  $\Sigma_0$  are

$$\lambda_1 = \sigma^2 (1 + (p - 1)\rho),$$
  

$$\lambda_2 = \sigma^2 (1 - \rho),$$
  

$$\vdots \qquad \vdots$$
  

$$\lambda_p = \sigma^2 (1 - \rho).$$

• Let's assume  $\sigma^2=1$ . We are interested in testing whether the correlation matrix is equal to  $\Sigma_1$ .

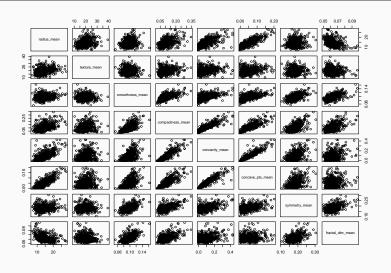
### Test for structured covariance iii

- Let  $\bar{r}_k = \frac{1}{p-1} \sum_{i=1, i \neq k}^p r_{ik}$  be the average of the off-diagonal value of the k-th column of the sample correlation matrix.
- Let  $\bar{r} = \frac{2}{p(p-1)} \sum_{i < j} r_{ij}$  be the average of all off-diagonal elements (we are only looking at entries below the diagonal).
- $\bullet$  Finally, let  $\hat{\gamma} = \frac{(p-1)^2[1-(1-\bar{r})^2]}{p-(p-2)(1-\bar{r})^2}.$
- We reject the null hypothesis that the correlation matrix is equal to  $\Sigma_0$  if

$$\frac{(n-1)}{(1-\bar{r})^2} \left[ \sum_{i \le j} (r_{ij} - \bar{r})^2 - \hat{\gamma} \sum_{k=1}^p (\bar{r}_k - \bar{r})^2 \right] > \chi_\alpha^2((p+1)(p-2)/2)$$

### Example i

### Example ii



## Example iii

```
# Overall mean
r bar <- mean(R[upper.tri(R, diag = FALSE)])
# Column specific means
r cols \leftarrow (colSums(R) - 1)/(nrow(R) - 1)
# Extra quantities
p <- ncol(dataset)</pre>
n <- nrow(dataset)</pre>
gamma hat <-(p-1)^2*(1-(1-r bar)^2)/
  (p - (p - 2)*(1 - r bar)^2)
```

### Example iv

## [1] TRUE

```
# Test statistic
Tstat <- sum((R[upper.tri(R,
                           diag = FALSE)] - r bar)^2) -
  gamma hat*sum((r cols - r bar)^2)
Tstat \langle (n-1)*Tstat/(1-r bar)^2
Tstat > qchisq(0.95, 0.5*(p+1)*(p-2))
```

## Selecting the number of PCs i

- We already discussed two strategies for selecting the number of principal components:
  - Look at the scree plot and find where the curve starts to be flat;
  - Retain as many PCs as required to explain the desired proportion of variance.

## Selecting the number of PCs ii

- There is a vast literature on different strategies for selecting the number of components. Two good references:
  - Peres-Neto et al. (2005) How many principal components? stopping rules for determining the number of non-trivial axes revisited
  - Jolliffe (2012) Principal Component Analysis (2nd ed)
- We will discuss one more technique based on resampling.
- The idea is to try to estimate the distribution of eigenvalues if there was no correlation between the variables.

## Selecting the number of PCs iii

### **Algorithm**

- Permute the observations of each column independently.
- 2. Perform PCA on the permuted data.
- 3. Repeat B times and collect the eigenvalues  $\hat{\lambda}_1^{(b)}, \dots, \hat{\lambda}_p^{(b)}$ .
- 4. Keep the components whose observed  $\hat{\lambda}_i$  is greater than  $(1-\alpha)\%$  of the values  $\hat{\lambda}_i^{(b)}$  obtained through permutations.

# Example (cont'd) i

```
decomp <- prcomp(dataset)
summary(decomp)$importance[,seq_len(3)]</pre>
```

```
## PC1 PC2 PC3
## Standard deviation 4.60806 3.112611 0.07664969
## Proportion of Variance 0.68654 0.313240 0.00019000
## Cumulative Proportion 0.68654 0.999780 0.99997000
```

# Example (cont'd) ii

```
screeplot(decomp, type = 'l')
```

# Example (cont'd) iii



## Example (cont'd) iv

```
permute data <- function(data) {</pre>
  p <- ncol(data)</pre>
  data perm <- data
  for (i in seq len(p)) {
    ind sc <- sample(nrow(data))</pre>
    data perm[,i] <- data[ind sc, i]</pre>
  }
  return(data perm)
```

# Example (cont'd) v

```
set.seed(123)
B <- 1000
alpha <- 0.05
results <- matrix(NA, ncol = B,
                   nrow = ncol(dataset))
results[,1] <- decomp$sdev
results[,-1] <- replicate(B - 1, {
  data perm <- permute_data(dataset)</pre>
  prcomp(data perm)$sdev
})
```

# Example (cont'd) vi

```
cutoff <- apply(results, 1, function(row) {
   mean(row >= row[1])
})
which(cutoff < alpha)
## [1] 1</pre>
```

## Biplots i

- In our example with the MNIST dataset, we plotted the first principal component against the second component.
  - This gave us a sense of how much discriminatory ability each PC gave us.
  - E.g. the first PC separated 1s from 0s
- What was missing from that plot was how the PCs were related to the original variables.
- A biplot is a graphical display of both the original observations and original variables together on one scatterplot.

## Biplots ii

- The prefix "bi" refers to two modalities
   (i.e. observations and variables), not to two dimensions.
- One approach to biplots relies on the Eckart-Young theorem:
  - The "best" 2-dimensional representation of the data passes through the plane containing the first two eigenvectors of the sample covariance matrix.

## Biplots iii

#### Construction

- Let  $\tilde{\mathbb{Y}}$  be the  $n \times p$  matrix of centered data, and let  $w_1, \dots, w_p$  be the p eigenvectors of  $\tilde{\mathbb{Y}}^T \tilde{\mathbb{Y}}$ .
- For each row  $\mathbf{Y}_i$  of  $\mathbb{Y}$ , add the point  $\left(w_1^T\mathbf{Y}_i, w_2^T\mathbf{Y}_i\right)$  to the plot.
- The j-th column of  $\mathbb{Y}$  is represented by an arrow from the origin to the point  $(w_{1j}, w_{2j})$ .
- It may be necessary to rescale the PCs and/or the loadings in order to see the relationship better.

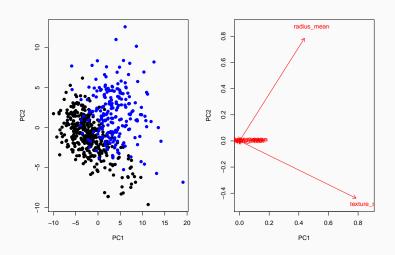
## Example (cont'd) i

```
# Continuing with our example on breast cancer
decomp <- prcomp(dataset)</pre>
# Extract PCs and loadings
PCs \leftarrow decompx[, 1:2]
loadings <- decomp$rotation[, 1:2]
# Extract data on tumour type
colour <- ifelse(brca$y == "B", "black", 'blue')</pre>
```

## Example (cont'd) ii

```
par(mfrow = c(1,2))
plot(PCs, pch = 19, col = colour)
plot(loadings, type = 'n')
text(loadings,
     labels = colnames(dataset),
     col = 'red')
arrows(0, 0, 0.9 * loadings[, 1],
       0.9 * loadings[, 2],
       col = 'red'.
       length = 0.1)
```

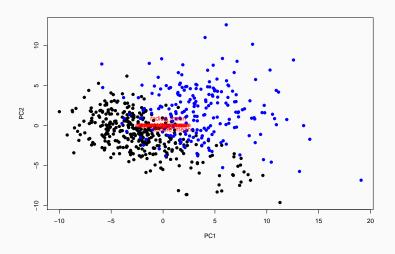
# Example (cont'd) iii



# Example (cont'd) iv

```
# Or both on the same plot
plot(PCs, pch = 19, col = colour)
text(loadings,
     labels = colnames(dataset),
     col = 'red')
arrows(0, 0, 0.9 * loadings[, 1],
       0.9 * loadings[, 2],
       col = 'red'.
       length = 0.1)
```

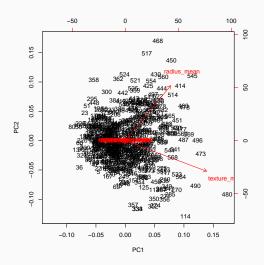
# Example (cont'd) v



# Example (cont'd) vi

```
# The biplot function rescales for us
biplot(decomp)
```

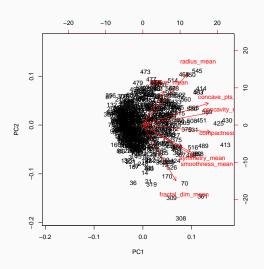
## Example (cont'd) vii



# Example (cont'd) viii

```
# With scaled data
biplot(prcomp(dataset, scale = TRUE))
```

# Example (cont'd) ix



## Summary of graphical displays

- When we plot the first PC against the second PC, we are looking for similarity between observations.
- When we plot the first loading against the second loading, we are looking for similarity between variables.
  - ullet Orthogonal loadings  $\Longrightarrow$  Uncorrelated variables
  - Obtuse angle between loadings ⇒ Negative correlation
- A **biplot** combines both pieces of information.
  - You can think of it as a projection of the p-dimensional scatter plot (points and axes) onto a 2-dimensional plane.
- A scree plot displays the amount of variation in each principal component.