Principal Component Analysis Max Turgeon STAT 4690-Applied Multivariate Analysis ## Population PCA i - PCA: Principal Component Analysis - Dimension reduction method: - Let $\mathbf{Y}=(Y_1,\ldots,Y_p)$ be a random vector with covariance matrix Σ . We are looking for a transformation $h:\mathbb{R}^p\to\mathbb{R}^k$, with $k\ll p$ such that $h(\mathbf{Y})$ retains "as much information as possible" about \mathbf{Y} . - In PCA, we are looking for a linear transformation $h(y) = w^T y$ with maximal variance (where ||w|| = 1) - More generally, we are looking for k linear transformations w_1, \ldots, w_k such that $w_j^T \mathbf{Y}$ has maximal variance and is uncorrelated with $w_1^T \mathbf{Y}, \ldots, w_{j-1}^T \mathbf{Y}$. ## Population PCA ii • First, note that $Var(w^T\mathbf{Y}) = w^T\Sigma w$. So our optimisation problem is $$\max_{w} w^T \Sigma w, \quad \text{with } w^T w = 1.$$ From the theory of Lagrange multipliers, we can look at the unconstrained problem $$\max_{w,\lambda} w^T \Sigma w - \lambda (w^T w - 1).$$ ## Population PCA iii • Write $\phi(w,\lambda)$ for the function we are trying to optimise. We have $$\frac{\partial}{\partial w}\phi(w,\lambda) = \frac{\partial}{\partial w}w^T \Sigma w - \lambda(w^T w - 1)$$ $$= 2\Sigma w - 2\lambda w;$$ $$\frac{\partial}{\partial \lambda}\phi(w,\lambda) = w^T w - 1.$$ From the first partial derivative, we conclude that $$\Sigma w = \lambda w$$. ## Population PCA iv - From the second partial derivative, we conclude that $w \neq 0$; in other words, w is an eigenvector of Σ with eigenvalue λ . - Moreover, at this stationary point of $\phi(w,\lambda)$, we have $$Var(w^T \mathbf{Y}) = w^T \Sigma w = w^T (\lambda w) = \lambda w^T w = \lambda.$$ - In other words, to maximise the variance $Var(w^T\mathbf{Y})$, we need to choose λ to be the *largest* eigenvalue of Σ . - By induction, and using the extra constraints $w_i^T w_j = 0$, we can show that all other linear transformations are given by eigenvectors of Σ . ## Population PCA v #### **PCA Theorem** Let $\lambda_1 \geq \cdots \geq \lambda_p$ be the eigenvalues of Σ , with corresponding unit-norm eigenvectors w_1, \ldots, w_p . To reduce the dimension of \mathbf{Y} from p to k such that every component of $W^T\mathbf{Y}$ is uncorrelated and each direction has maximal variance, we can take $W = \begin{pmatrix} w_1 & \cdots & w_k \end{pmatrix}$, whose j-th column is w_j . ## Properties of PCA i - Some vocabulary: - $\mathbf{Z}_i = w_i^T \mathbf{Y}$ is called the *i*-th **principal component** of \mathbf{Y} . - w_i is the *i*-th vector of **loadings**. - Note that we can take k = p, in which case we do not reduce the dimension of Y, but we transform it into a random vector with uncorrelated components. - Let $\Sigma = P\Lambda P^T$ be the eigendecomposition of Σ . We have $$\sum_{i=1}^{p} \operatorname{Var}(w_i^T \mathbf{Y}) = \sum_{i=1}^{p} \lambda_i = \operatorname{tr}(\Lambda) = \operatorname{tr}(\Sigma) = \sum_{i=1}^{p} \operatorname{Var}(Y_i).$$ ## Properties of PCA ii - Therefore, each linear transformation $w_i^T \mathbf{Y}$ contributes $\lambda_i / \sum_i \lambda_i$ as percentage of the overall variance. - Selecting k: One common strategy is to select a threshold (e.g. c=0.9) such that $$\frac{\sum_{i=1}^{k} \lambda_i}{\sum_{i=1}^{p} \lambda_i} \ge c.$$ ## Scree plot - A scree plot is a plot with the sequence 1, ..., p on the x-axis, and the sequence $\lambda_1, ..., \lambda_p$ on the y-axis. - Another common strategy for selecting k is to choose the point where the curve starts to flatten out. - Note: This inflection point does not necessarily exist, and it may be hard to identify. #### **Correlation matrix** - When the observations are on the different scale, it is typically more appropriate to normalise the components of Y before doing PCA. - The variance depends on the units, and therefore without normalising, the component with the "smallest" units (e.g. centimeters vs. meters) could be driving most of the overall variance. - In other words, instead of using Σ , we can use the (population) correlation matrix R. - Note: The loadings and components we obtain from Σ are **not** equivalent to the ones obtained from R. ## Sample PCA - In general, we do not the population covariance matrix Σ . - Therefore, in practice, we estimate the loadings w_i through the eigenvectors of the sample covariance matrix S_n . - As with the population version of PCA, if the units are different, we should normalise the components or use the sample correlation matrix. ## Example 1 i ``` library(mvtnorm) Sigma <- matrix(c(1, 0.5, 0.1, 0.5, 1, 0.5, 0.1, 0.5, 1), ncol = 3) set.seed(17) X <- rmvnorm(100, sigma = Sigma)</pre> pca <- prcomp(X)</pre> ``` ## Example 1 ii ``` summary(pca) ## Importance of components: PC1 PC2 PC3 ## ## Standard deviation 1.4994 0.9457 0.6009 ## Proportion of Variance 0.6417 0.2552 0.1031 ## Cumulative Proportion 0.6417 0.8969 1.0000 screeplot(pca, type = 'l') ``` # Example 1 iii ### Example 2 i ``` pca <- prcomp(USArrests, scale = TRUE)</pre> summary(pca) ## Importance of components: PC2 PC3 PC4 ## PC1 ## Standard deviation 1.5749 0.9949 0.59713 0.4164 ## Proportion of Variance 0.6201 0.2474 0.08914 0.0433 ## Cumulative Proportion 0.6201 0.8675 0.95664 1.00000 ``` # Example 2 ii ``` screeplot(pca, type = 'l') ``` # Example 2 iii # **Applications of PCA** # Training and testing i Recall: Mean Squared Error $$MSE = \frac{1}{n} \sum_{i=1}^{n} (Y_i - \hat{Y}_i)^2,$$ where Y_i, \hat{Y}_i are the *observed* and *predicted* values. - It is good practice to separate your dataset in two: - Training dataset, that is used to build and fit your model (e.g. choose covariates, estimate regression coefficients). - Testing dataset, that it used to compute the MSE or other performance metrics. ## Training and testing ii - PCA can be used for predictive model building in (univariate) linear regression: - Feature extraction: Perform PCA on the covariates, extract the first k PCs, and use them as predictors in your model. - Feature selection: Perform PCA on the covariates, look at the first PC, find the covariates whose loadings are the largest (in absolute value), and only use those covariates as predictors. ### Feature Extraction i ``` library(ElemStatLearn) library(tidyverse) train <- subset(prostate, train == TRUE, select = -train) test <- subset(prostate, train == FALSE, select = -train) # First model: Linear regression lr model <- lm(lpsa ~ ., data = train)</pre> lr pred <- predict(lr model, newdata = test)</pre> (lr mse <- mean((test$lpsa - lr pred)^2))</pre> ``` ### Feature Extraction ii ## [1] 0.521274 prcomp ``` # PCA decomp <- train %>% subset(select = -lpsa) %>% as.matrix() %>% ``` summary(decomp)\$importance[,1:3] ### Feature Extraction iii ``` ## PC1 PC2 PC3 ## Standard deviation 29.40597 7.211721 1.410789 ## Proportion of Variance 0.93844 0.056440 0.002160 ## Cumulative Proportion 0.93844 0.994890 0.997050 ``` ``` screeplot(decomp, type = 'lines') ``` ## Feature Extraction iv ### Feature Extraction v ``` # Second model: PCs for predictors train pc <- train train pc$PC1 <- decomp$x[,1] pc model <- lm(lpsa ~ PC1, data = train pc)</pre> test pc <- as.data.frame(predict(decomp, test))</pre> pc pred <- predict(pc model,</pre> newdata = test pc) (pc mse <- mean((test$lpsa - pc pred)^2)) ## [1] 0.9552741 ``` ### Feature Selection i ``` contribution <- decomp$rotation[,"PC1"]</pre> round(contribution, 3)[1:6] ## lcavol lweight lbph svi lcp age ## 0.021 0.001 0.075 -0.001 0.007 0.032 round(contribution, 3)[7:8] ## gleason pgg45 ## 0.018 0.996 ``` #### Feature Selection ii ``` (keep <- names(which(abs(contribution) > 0.01))) ## [1] "lcavol" "age" "lcp" "gleason" "pgg45" fs model <- lm(lpsa ~ ., data = train[,c(keep, "lpsa")] fs pred <- predict(fs model, newdata = test)</pre> (fs mse <- mean((test$lpsa - fs pred)^2))</pre> ## [1] 0.5815571 ``` ### Feature Selection iii ``` model_plot <- data.frame("obs" = test$lpsa, "LR" = lr_pred, "PC" = pc_pred, "FS" = fs_pred) %>% gather(Model, pred, -obs) ``` #### Feature Selection iv ## Feature Selection v #### **Comments** - The full model performed better than the ones we created with PCA - It had a lower MSE - On the other hand, if we had multicollinearity issues, or too many covariates (p > n), the PCA models could outperform the full model. - However, note that PCA does not use the association between the covariates and the outcome, so it will never be the most efficient way of building a model. ### Data Visualization i ## [1] 10000 784 ``` library(dslabs) mnist <- read_mnist()</pre> dim(mnist$train$images) ## [1] 60000 784 dim(mnist$test$images) ``` ### Data Visualization ii ## Data Visualization iii ### Data Visualization iv #### Data Visualization v #### Data Visualization vi ``` decomp$x[,1:2] %>% as.data.frame() %>% mutate(label = factor(mnist$train$labels)) %>% ggplot(aes(PC1, PC2, colour = label)) + geom_point(alpha = 0.5) + theme_minimal() ``` #### Data Visualization vii #### Data Visualization viii ``` # And on the test set decomp %>% predict(newdata = mnist$test$images) %>% as.data.frame() %>% mutate(label = factor(mnist$test$labels)) %>% ggplot(aes(PC1, PC2, colour = label)) + geom_point(alpha = 0.5) + theme_minimal() ``` ### Data Visualization ix #### Data Visualization x ### Data Visualization xi #### Data Visualization xii ``` # Approximation with 90 PCs approx mnist <- decomp$rotation[, seq_len(90)] %*% decomp$x[1, seq len(90)] par(mfrow = c(1, 2)) matrix(mnist$train$images[1,], ncol = 28) %>% image(col = gray.colors(12, rev = TRUE), axes = FALSE, main = "Original") matrix(approx mnist, ncol = 28) %>% image(col = gray.colors(12, rev = TRUE), axes = FALSE, main = "Approx") ``` ## Data Visualization xiii ## Additional comments about sample PCA i - Let $\mathbf{Y}_1, \ldots, \mathbf{Y}_n$ be a sample from a distribution with covariance matrix Σ . Write \mathbb{Y} for the $n \times p$ matrix whose i-th row is \mathbf{Y}_i . - Let S_n be the sample covariance matrix, and write W_k for the matrix whose columns are the first k eigenvectors of S_n . - ullet You can define the matrix of k principal components as $$\mathbb{Z} = \mathbb{Y}W_k$$. ## Additional comments about sample PCA in On the other hand, it is much more common to define it as $$\mathbb{Z} = \tilde{\mathbb{Y}}W_k,$$ where $\tilde{\mathbb{Y}}$ is the centered version of \mathbb{Y} (i.e. the sample mean has been subtracted from each row). This leads to sample principal components with mean zero. # Example 1 (revisited) i # Example 1 (revisited) ii ``` set.seed(17) X <- rmvnorm(100, mean = mu, sigma = Sigma) pca <- prcomp(X)</pre> colMeans(X) ## [1] 0.8789229 2.0517403 2.0965127 colMeans(pca$x) ``` # Example 1 (revisited) iii ``` ## PC1 PC2 PC3 ## -6.169544e-17 5.433154e-17 9.228729e-18 # On the other hand pca <- prcomp(X, center = FALSE) colMeans(pca$x)</pre> ``` ``` ## PC1 PC2 PC3 ## 3.058960918 0.142358612 0.001050088 ``` ## Geometric interpretation of PCA i - The definition of PCA as a linear combination that maximises variance is due to Hotelling (1933). - But PCA was actually introduced earlier by Pearson (1901) - On Lines and Planes of Closest Fit to Systems of Points in Space - He defined PCA as the best approximation of the data by a linear manifold - Let's suppose we have a lower dimension representation of \mathbb{Y} , denoted by a $n \times k$ matrix \mathbb{Z} . ## Geometric interpretation of PCA ii \blacksquare We want to $\textit{reconstruct}~\mathbb{Y}$ using an affine transformation $$f(z) = \mu + W_k z,$$ where W_k is a $p \times k$ matrix. • We want to find μ, W_k, \mathbf{Z}_i that minimises the reconstruction error: $$\min_{\mu, W_k, \mathbf{Z}_i} \sum_{i=1}^n \|\mathbf{Y}_i - \mu - W_k \mathbf{Z}_i\|^2.$$ # Geometric interpretation of PCA iii • First, treating W_k constant and minimising over μ, \mathbf{Z}_i , we find $$\hat{\boldsymbol{\mu}} = \bar{\mathbf{Y}},$$ $$\hat{\mathbf{Z}}_i = W_k^T (\mathbf{Y}_i - \bar{\mathbf{Y}}).$$ Putting these quantities into the reconstruction error, we get $$\min_{W_k} \sum_{i=1}^n \| (\mathbf{Y}_i - \bar{\mathbf{Y}}) - W_k W_k^T (\mathbf{Y}_i - \bar{\mathbf{Y}}) \|^2.$$ ## Geometric interpretation of PCA iv #### **Eckart-Young theorem** The reconstruction error is minimised by taking W_k to be the matrix whose columns are the first k eigenvectors of the sampling covariance matrix S_n . Equivalently, we can take the matrix whose columns are the first k right singular vectors or the centered data matrix $\tilde{\mathbb{Y}}$. ## Example i ``` set.seed(1234) # Random measurement error sigma <- 5 # Exact relationship between # Celsius and Fahrenheit temp_c <- seq(-40, 40, by = 1) temp_f <- 1.8*temp_c + 32</pre> ``` ### Example ii ``` # Linear model (fit <- lm(temp_f_noise ~ temp_c_noise))</pre> ``` ## Example iii confint(fit) ``` ## ## Call: ## lm(formula = temp_f_noise ~ temp_c_noise) ## ## Coefficients: ## (Intercept) temp_c_noise ## 34.256 1.662 ``` ## Example iv ``` 2.5 % 97.5 % ## ## (Intercept) 32.152891 36.35921 ## temp c noise 1.577228 1.74711 # PCA pca <- prcomp(cbind(temp c noise, temp f noise))</pre> pca$rotation ## PC1 PC2 ## temp c noise 0.5012360 -0.8653106 ``` ## temp f noise 0.8653106 0.5012360 ## Example v ``` pca$rotation[2,"PC1"]/pca$rotation[1,"PC1"] ``` ## [1] 1.726354 ## Large sample inference i - If we impose distributional assumptions on the data Y, we can derive the sampling distributions of the sample principal components. - Assume $\mathbf{Y} \sim N_p(\mu, \Sigma)$, with Σ positive definite. Let $\lambda_1 > \cdots > \lambda_p$ be the eigenvalues of Σ ; in particular we assume they are *distinct*. Finally let w_1, \ldots, w_p be the corresponding eigenvectors. - Given a random sample of size n, let S_n be the sample covariance matrix, $\hat{\lambda}_1, \ldots, \hat{\lambda}_p$ its eigenvalues, and $\hat{w}_1, \ldots, \hat{w}_p$ the corresponding eigenvectors. # Large sample inference ii • Define Λ to be the diagonal matrix whose entries are $\lambda_1, \ldots, \lambda_p$, and define $$\Omega_i = \lambda_i \sum_{k=1, k \neq i}^p \frac{\lambda_k}{(\lambda_k - \lambda_i)^2} w_k w_k^T.$$ # Large sample inference iii #### **Asymptotic results** 1. Write $\lambda = (\lambda_1, \dots, \lambda_p)$ and similarly for $\hat{\lambda}$. As $n \to \infty$, we have $$\sqrt{n}\left(\hat{\boldsymbol{\lambda}}-\boldsymbol{\lambda}\right)\to N_p(0,2\Lambda^2).$$ 2. As $n \to \infty$, we have $$\sqrt{n} (\hat{w}_i - w_i) \to N_p(0, \Omega_i).$$ 3. Each $\hat{\lambda}_i$ is distributed independently of \hat{w}_i . #### Comments i - These results only apply to principal components derived from the covariance matrix. - Some asymptotic results are available for those derived from the correlation matrix, but we will not cover them in class. - Asymptotically, all eigenvalues of S_n are independent. - You can get a confidence interval for λ_i as follows: $$\frac{\hat{\lambda}_i}{(1+z_{\alpha/2}\sqrt{2/n})} \le \lambda_i \le \frac{\hat{\lambda}_i}{(1-z_{\alpha/2}\sqrt{2/n})}.$$ #### Comments ii - Use Bonferroni correction if you want Cls that are simultaneously valid for all eigenvalues. - The matrices Ω_i have rank p-1, and therefore they are singular. - The entries of \hat{w}_i are correlated, and this correlation depends on the *separation* between the eigenvalues. - lacksquare Good separation \Longrightarrow smaller correlation ### Example i ``` library(dslabs) library(ggridges) # Data on Breast Cancer as.data.frame(brca$x) %>% gather(variable, measurement) %>% mutate(variable = reorder(variable, measurement, median)) %>% ggplot(aes(x = measurement, y = variable)) + geom density ridges() + theme ridges() + coord cartesian(xlim = c(0, 250)) ``` ### Example ii ## Example iii ``` # Remove some variables rem index <- which(colnames(brca$x) %in% c("area worst", "area mean", "perimeter worst", "perimeter mean")) dataset <- brca$x[,-rem index]</pre> decomp <- prcomp(dataset)</pre> summary(decomp)$importance[,1:3] ``` ### Example iv ``` ## Standard deviation 45.78445 7.281664 3.677815 ## Proportion of Variance 0.96776 0.024480 0.006240 ## Cumulative Proportion 0.96776 0.992240 0.998490 ``` ``` screeplot(decomp, type = 'l') ``` # Example v ## Example vi ``` # Let's put a CI around the first eigenvalue first ev <- decomp$sdev[1]^2 n <- nrow(dataset)</pre> # Recall that TV = 2166 c("LB" = first ev/(1+qnorm(0.975)*sqrt(2/n)), "Est." = first ev, "UP" = first ev/(1-qnorm(0.975)*sqrt(2/n)) ## LB Est. UP ## 1877.992 2096.216 2371.822 ``` #### Simulations i ``` B <- 1000; n <- 100; p <- 3 results <- purrr::map df(seq len(B), function(b) { X \leftarrow matrix(rnorm(p*n, sd = sqrt(c(1, 2, 3))), ncol = p, byrow = TRUE) tmp <- eigen(cov(X), symmetric = TRUE,</pre> only.values = TRUE) tibble(ev1 = tmp$values[1], ev2 = tmp$values[2], ev3 = tmp$values[3]) }) ``` #### Simulations ii ## Simulations iii ### Simulations iv ## ev1 ev2 ev3 ``` results %>% summarise_all(mean) ## # A tibble: 1 x 3 ``` ### Simulations v ``` p < -2 results <- purrr::map_df(seq_len(B), function(b) { X \leftarrow matrix(rnorm(p*n, sd = c(1, 2)), ncol = p, byrow = TRUE) tmp <- eigen(cov(X), symmetric = TRUE)</pre> tibble(xend = tmp$vectors[1,1], yend = tmp$vectors[2,1] ``` ### Simulations vi ``` results %>% ggplot() + geom segment(aes(xend = xend, yend = yend), x = 0, y = 0, colour = 'grey60') + geom segment(x = 0, xend = 0, y = 0, y = 1, colour = 'blue', size = 2) + expand_limits(y = 0, x = c(-1, 1)) + theme_minimal() ``` ## Simulations vii ### Simulations viii ``` # Or looking at angles results %>% transmute(theta = atan2(yend, xend)) %>% ggplot(aes(theta)) + geom_histogram() + theme_minimal() + geom_vline(xintercept = pi/2) ``` ## Simulations ix #### Test for structured covariance i - The asymptotic results above assumed distinct eigenvalues. - But we may be interested in *structured* covariance matrices; for example: $$\Sigma_0 = \sigma^2 \begin{pmatrix} 1 & \rho & \cdots & \rho \\ \rho & 1 & \cdots & \rho \\ \vdots & \vdots & \ddots & \vdots \\ \rho & \rho & \cdots & 1 \end{pmatrix}.$$ This is called an exchangeable correlation structure. ### Test for structured covariance ii • Assuming $\rho > 0$, the eigenvalues of Σ_0 are $$\lambda_1 = \sigma^2 (1 + (p - 1)\rho),$$ $$\lambda_2 = \sigma^2 (1 - \rho),$$ $$\vdots \qquad \vdots$$ $$\lambda_p = \sigma^2 (1 - \rho).$$ • Let's assume $\sigma^2=1$. We are interested in testing whether the correlation matrix is equal to Σ_1 . ### Test for structured covariance iii - Let $\bar{r}_k = \frac{1}{p-1} \sum_{i=1, i \neq k}^p r_{ik}$ be the average of the off-diagonal value of the k-th column of the sample correlation matrix. - Let $\bar{r} = \frac{2}{p(p-1)} \sum_{i < j} r_{ij}$ be the average of all off-diagonal elements (we are only looking at entries below the diagonal). - \bullet Finally, let $\hat{\gamma} = \frac{(p-1)^2[1-(1-\bar{r})^2]}{p-(p-2)(1-\bar{r})^2}.$ - We reject the null hypothesis that the correlation matrix is equal to Σ_0 if $$\frac{(n-1)}{(1-\bar{r})^2} \left[\sum_{i \le j} (r_{ij} - \bar{r})^2 - \hat{\gamma} \sum_{k=1}^p (\bar{r}_k - \bar{r})^2 \right] > \chi_\alpha^2((p+1)(p-2)/2)$$ ### Example i ### Example ii ## Example iii ``` # Overall mean r bar <- mean(R[upper.tri(R, diag = FALSE)]) # Column specific means r cols \leftarrow (colSums(R) - 1)/(nrow(R) - 1) # Extra quantities p <- ncol(dataset)</pre> n <- nrow(dataset)</pre> gamma hat <-(p-1)^2*(1-(1-r bar)^2)/ (p - (p - 2)*(1 - r bar)^2) ``` ### Example iv ## [1] TRUE ``` # Test statistic Tstat <- sum((R[upper.tri(R, diag = FALSE)] - r bar)^2) - gamma hat*sum((r cols - r bar)^2) Tstat \langle (n-1)*Tstat/(1-r bar)^2 Tstat > qchisq(0.95, 0.5*(p+1)*(p-2)) ``` ## Selecting the number of PCs i - We already discussed two strategies for selecting the number of principal components: - Look at the scree plot and find where the curve starts to be flat; - Retain as many PCs as required to explain the desired proportion of variance. ## Selecting the number of PCs ii - There is a vast literature on different strategies for selecting the number of components. Two good references: - Peres-Neto et al. (2005) How many principal components? stopping rules for determining the number of non-trivial axes revisited - Jolliffe (2012) Principal Component Analysis (2nd ed) - We will discuss one more technique based on resampling. - The idea is to try to estimate the distribution of eigenvalues if there was no correlation between the variables. ## Selecting the number of PCs iii ### **Algorithm** - Permute the observations of each column independently. - 2. Perform PCA on the permuted data. - 3. Repeat B times and collect the eigenvalues $\hat{\lambda}_1^{(b)}, \dots, \hat{\lambda}_p^{(b)}$. - 4. Keep the components whose observed $\hat{\lambda}_i$ is greater than $(1-\alpha)\%$ of the values $\hat{\lambda}_i^{(b)}$ obtained through permutations. # Example (cont'd) i ``` decomp <- prcomp(dataset) summary(decomp)$importance[,seq_len(3)]</pre> ``` ``` ## PC1 PC2 PC3 ## Standard deviation 4.60806 3.112611 0.07664969 ## Proportion of Variance 0.68654 0.313240 0.00019000 ## Cumulative Proportion 0.68654 0.999780 0.99997000 ``` # Example (cont'd) ii ``` screeplot(decomp, type = 'l') ``` # Example (cont'd) iii ## Example (cont'd) iv ``` permute data <- function(data) {</pre> p <- ncol(data)</pre> data perm <- data for (i in seq len(p)) { ind sc <- sample(nrow(data))</pre> data perm[,i] <- data[ind sc, i]</pre> } return(data perm) ``` # Example (cont'd) v ``` set.seed(123) B <- 1000 alpha <- 0.05 results <- matrix(NA, ncol = B, nrow = ncol(dataset)) results[,1] <- decomp$sdev results[,-1] <- replicate(B - 1, { data perm <- permute_data(dataset)</pre> prcomp(data perm)$sdev }) ``` # Example (cont'd) vi ``` cutoff <- apply(results, 1, function(row) { mean(row >= row[1]) }) which(cutoff < alpha) ## [1] 1</pre> ``` ## Biplots i - In our example with the MNIST dataset, we plotted the first principal component against the second component. - This gave us a sense of how much discriminatory ability each PC gave us. - E.g. the first PC separated 1s from 0s - What was missing from that plot was how the PCs were related to the original variables. - A biplot is a graphical display of both the original observations and original variables together on one scatterplot. ## Biplots ii - The prefix "bi" refers to two modalities (i.e. observations and variables), not to two dimensions. - One approach to biplots relies on the Eckart-Young theorem: - The "best" 2-dimensional representation of the data passes through the plane containing the first two eigenvectors of the sample covariance matrix. ## Biplots iii #### Construction - Let $\tilde{\mathbb{Y}}$ be the $n \times p$ matrix of centered data, and let w_1, \dots, w_p be the p eigenvectors of $\tilde{\mathbb{Y}}^T \tilde{\mathbb{Y}}$. - For each row \mathbf{Y}_i of \mathbb{Y} , add the point $\left(w_1^T\mathbf{Y}_i, w_2^T\mathbf{Y}_i\right)$ to the plot. - The j-th column of \mathbb{Y} is represented by an arrow from the origin to the point (w_{1j}, w_{2j}) . - It may be necessary to rescale the PCs and/or the loadings in order to see the relationship better. ## Example (cont'd) i ``` # Continuing with our example on breast cancer decomp <- prcomp(dataset)</pre> # Extract PCs and loadings PCs \leftarrow decompx[, 1:2] loadings <- decomp$rotation[, 1:2] # Extract data on tumour type colour <- ifelse(brca$y == "B", "black", 'blue')</pre> ``` ## Example (cont'd) ii ``` par(mfrow = c(1,2)) plot(PCs, pch = 19, col = colour) plot(loadings, type = 'n') text(loadings, labels = colnames(dataset), col = 'red') arrows(0, 0, 0.9 * loadings[, 1], 0.9 * loadings[, 2], col = 'red'. length = 0.1) ``` # Example (cont'd) iii # Example (cont'd) iv ``` # Or both on the same plot plot(PCs, pch = 19, col = colour) text(loadings, labels = colnames(dataset), col = 'red') arrows(0, 0, 0.9 * loadings[, 1], 0.9 * loadings[, 2], col = 'red'. length = 0.1) ``` # Example (cont'd) v # Example (cont'd) vi ``` # The biplot function rescales for us biplot(decomp) ``` ## Example (cont'd) vii # Example (cont'd) viii ``` # With scaled data biplot(prcomp(dataset, scale = TRUE)) ``` # Example (cont'd) ix ## Summary of graphical displays - When we plot the first PC against the second PC, we are looking for similarity between observations. - When we plot the first loading against the second loading, we are looking for similarity between variables. - ullet Orthogonal loadings \Longrightarrow Uncorrelated variables - Obtuse angle between loadings ⇒ Negative correlation - A **biplot** combines both pieces of information. - You can think of it as a projection of the p-dimensional scatter plot (points and axes) onto a 2-dimensional plane. - A scree plot displays the amount of variation in each principal component.