
Introduction to Statistical Genetics

Max Turgeon

STAT 4690–Applied Multivariate Analysis



Overview i

• We will look at three papers that use PCA in slightly
different ways:

1. Price et al. “Principal components analysis corrects for
stratification in genome-wide association studies.”
Nature genetics (2006).

2. Leek & Storey. “Capturing heterogeneity in gene
expression studies by surrogate variable analysis.” PLoS
genetics (2007).

3. Gao et al. “A multiple testing correction method for
genetic association studies using correlated single
nucleotide polymorphisms.” Genetic epidemiology
(2008).
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Overview ii

• The main purpose of this lecture is to:
• Introduce you to important concepts in applied statistics

(e.g. confounding and multiple testing).
• Give you a sense of the versatility of PCA.
• Give an overview of the interplay between theoretical,

methodological and applied research in statistics.
• All three papers can be found on UM Learn (or online).
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Introduction to Genetics
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DNA

• Long molecule, double-stranded, made of four types of
nucleotides:

• Thymine
• Cytosine
• Guanine
• Adenine

• Nucleotides are paired:
• A-T and C-G

• This pairing allows replication:
• DNA molecule opens up
• From complimentarity, we can reconstruct two

molecules.
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Central Dogma

• Explains how DNA leads to proteins
• DNA =⇒ RNA =⇒ Protein

• Transcription and translation
• (T, C, G, A) =⇒ (U, C, G, A)
• Codon (i.e. triple) =⇒ Amino acid

• Gene: sequence of nucleotides that encodes a protein
• Other gene products are possible: microRNA, tRNA, etc.
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Genetic variation

• Random mutations
• After fertilization, a zygote has a copy of each

chromosome from each parent
• Assortment is random

• Before that, at meiosis, there is recombination
• At the population level:

• Population bottleneck
• Founder effect
• Natural selection

• The most studied genetic variation: Single Nucleotide
Polymorphism (SNP)

• A location in the genome where in the population we
observe at least different nucleotides
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Some vocabulary

• Allele: Sequence observed at a specific location
• One basepair for SNP
• Can be longer

• Minor/Major Allele: Least/Most observed allele in a
population

• MAF: Minor Allele Frequency
• Frequency at which the minor allele is observed in the

population
• Population specific

• Phenotype: Observable characteristic or trait
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Gene Expression

• All cells have the same DNA, but they produce different
proteins.

• Same cell type, under different conditions, can also
produce different proteins.

• Different mechanisms:
• Transcription factors
• Epigenetics
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Population Stratification
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High-throughput technologies

• Since the mid-2000s, SNP data is routinely collected at
hundreds of thousands, or even millions, of genetic loci.

• There are two basic types of technologies:
1. Micro-arrays: Designed to identify the allele at

pre-selected loci
2. Next-generation sequencing: Sequence large portions of

DNA.
• The data is similar: high-dimensional data (i.e. more

variables than observations).
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Genome-Wide Association Studies

• GWAS: Every genetic measurement is tested for
association with a single (or a few) phenotype of interest.

• Goal: Find genetic locations with evidence of causal
effect on disease of interest

• Or at least genetic locations that inherited together with
causal locus

• Two main challenges:
• Multiple testing (we’ll come back to it)
• Population stratification (i.e. confounding)
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Confounding

• Confounder: common cause of both the exposure and
outcome of interest

• E.g. Obesity is a cause of diabetes and cardiovascular
diseases.

• Failure to adjust for confounding can lead to spurious
correlations

• Three main methods for confounder adjustment:
• Randomisation
• Regression model
• Weighting
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Population stratification as a confounder

• Because of migration patterns and natural selection, some
alleles are preferentially selected in certain populations

• E.g. LCT gene and lactose intolerance.
• Population stratification: “allele frequency differences

between cases and controls due to systematic ancestry
differences” (Price et al)

• If a given allele and the phenotype of interest are more
prevalent in a certain population, this may give rise to
spurious correlation.

• Major problem: Population stratification is very hard (if
not impossible) to measure accurately.

• Solution: Estimate it from the collected genetic data.
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EIGENSTRAT i

• Price et al. (2006) proposed a method to adjust for
population stratification in GWASs.

• Essentially, the population stratification is estimated
using the principal components of the genetic data.

• More precisely, let G be the n × p matrix of genotypes
• The (i, j)-th entry gij is the value at the j-th locus for

the i-th sample.
• gij ∈ {0, 1, 2} counts the number of copies of the minor

allele.
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EIGENSTRAT ii

• Create matrix X by normalizing G

• Subtract the mean
• Divide by binomial standard deviation

√
pj(1 − pj).

• Select first k eigenvalues of the covariance matrix of X.
• Adjust for confounding by including the PCs into a

regression model.
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Figure 1
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Figure 2

Novembre et al. “Genes mirror geography within Europe.”
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Figure 3

Sabatti et al. “Genome-wide association analysis of metabolic
traits in a birth cohort from a founder population.” 19



Further comments

• There is a vast literature around how to use PCA to
account for population stratification

• How many PCs to retain.
• Theoretical justification.
• Power analysis.
• How granular can you get.

• Note: This is not how 23andMe and AncestryDNA
estimate your ethnicity!

• PCA can also be used to estimate under population
substructures in your data.

• E.g. Cryptic relatedness
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Adjusting for Unwanted Variation
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Gene expression studies i

• As for SNP data, gene expression is nowadays measured
using one of two high-throughput technology:

• Micro-arrays
• Next-generation sequencing

• What is measured in these experiments is the (relative)
abundance of RNA products.

• It can be hard to measure protein products (but see
proteomics)

• We may also be interested in other gene products
• You can think of micro-array data as continuous;

sequencing data as counts
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Gene expression studies ii

• There are essentially two type of analyses:
• Association between gene expression and SNP

(i.e. eQTL)
• Association between gene expression and phenotype

• You can think of these two approaches as related to
transcription and translation, respectively.

23



Sources of variation

• Leek & Storey are interested in the second type (i.e. GE
and phenotype).

• Their model starts by identifying three main sources of
variation:

• Modeled variation: This is the variation coming from
the variables you measured and included in your model.
The phenotype of interest goes here.

• Unmodeled variation: This is the variation coming from
variables that you may or may not have measured, but
in any case they are not included in the model. These
variables typically affect more than one gene.

• Random variation: This is the gene-specific error term,
and it is assumed to be independent between genes.
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Two models i

• Let Xij be the gene expression value at gene i from
individual j.

• Note: The indices are in the opposite order of what we
typically see!

• Let Yj be the primary variable of interest for individual j.
• Let Gℓ = (Gℓ1, . . . , Gℓn) be the ℓ-th unmodeled source of

variation.
• Following their breakdown of sources of variation, they

posit two models:
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Two models ii
1. The first one only contains the primary variable:

Xij = µi + fi(Yj) + εij ,

where µi is a gene-specific mean, fi is a gene-specific
function modeling the relationship between Xij and Yj ,
and εij is an error term with mean zero.

2. The second one also contains the variables Gℓ:

Xij = µi + fi(Yj) +
L∑

ℓ=1
γℓiGℓj + ε̃ij ,

where γℓi are the linear regression coefficients for the
variables Gℓ, and ε̃ij is a different error term, also with
mean zero.
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A few comments i

• In the models above, there is only one variable of interest,
but the approach can easily be extended to incorporate
more variables of interest.

• The functions fi are there for generality. This could be
the identity function (i.e. simple linear regression), they
could be a gene-specific transformation of the variable of
interest (e.g. log), or they could be something more
complex like a spline or fractional polynomial..

• The variables Gℓ are typically unobserved, and therefore
we cannot estimate them from the data without adding
any constraint.
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A few comments ii

• We could replace them and their coefficients γℓi by an
orthogonal transformation and still get the same model.

• The constraint we will add is that they are orthogonal.
• The (latent) variables we will estimate are called

surrogate variables.
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SVA algorithm

1. Fit the first model (i.e. without Gℓ) to get estimate µ̂i

and f̂i(Yj).
2. Create the residual matrix R, where the (i, j)-th entry is

Rij = Xij − µ̂i − f̂i(Yj).
3. Perform PCA on R and retain the first k principal

components using an algorithm of your choice (SVA
suggests using a resampling technique).

4. Refit the first model but add the estimated principal
components as new covariates.
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Why go through all this trouble? i

• In the previous paper we discussed, the authors extracted
the information on the confounders using PCA directly on
the data.

• This worked well because the major source of variation
in SNP data was due to population substructure

• In gene expression studies, the variable of interests are
also driving a good proportion of the variation.

• Therefore, we need to be able to distinguish between the
variation we care about and the variation we do not care
about.
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Why go through all this trouble? ii

• By modeling this extra variation, we achieve two main
goals:

• Increase the variation explained and therefore power.
• Adjust for confounding by unmodeled sources of

variation.
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Beyond gene expression i

• It is often very convenient to measure gene expression
using whole blood samples.

• However, whole blood is a mixture of cells:
• Lymphocytes
• Monocytes
• Neutrophils

• Each cell type has a different gene expression signature,
so we observe a mixture.

• Crucially, the mixture weights can be correlated with the
variable of interest
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Beyond gene expression ii

• E.g. to fight certain diseases, your blood cell type
proportions will change.

• It turns out this is also an issue for DNA methylation
experiments.

• SVA has been shown to be effective when trying to
correct for cell-type composition bias in DNA methylation
experiments (McGregor et al, Genome biology, 2016)
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Multiple Testing
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Multiple tests in statistical genetics i

• A typical statistical genetics study goes as follows:
• We collected data using high-throughput technologies.
• We have hundreds of thousands (or even millions) of

genomic measurements on hundreds or thousands of
individuals.

• For all these measurements, we test for association with
a variable of interest.

• In other words, if we have a million measurements, we
perform a million tests and compute a million p-values.
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Multiple tests in statistical genetics ii

• But in those tests, if we set the significance level at
α = 0.05, we expect 50,000 p-values to be significant
even if the variable of interest is associated with no
genomic measurement whatsoever.
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Counting Type I and II errors i

• Let m be the number of hypothesis tests. Let m0 be the
number of null hypotheses that are true. Let R be the
number of rejected hypotheses.

H0 true H0 false Total

Not rejected U T m − R

Rejected V S R

m0 m − m0 m
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Counting Type I and II errors ii

• In the table above, all capital letters represent random
variables.

• V is the number of Type I errors
• Therefore, if we want to control the Type I error rate with

multiple tests, we want to control V .
• There are different ways of doing this:

• Family-wise error rate: We want to control P (V > 0).
• False Discovery rate: We want to control the expected

value of V/R (R is the number of “discoveries”)
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Bonferroni correction

• We talked about Bonferroni CIs earlier in this course.
• We adjusted the significance level α to α/m.

• This Bonferroni correction controls the FWER at level α.
• The main criticism about this type of correction is that it

is conservative:
• If we have dependence between the tests, our true Type

I error rate will be lower than α.
• In general, to control the FWER, we pay a price in terms

of Type II errors, and therefore we get lower power.
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Effective number of independent tests

• One way to improve the classical Bonferroni correction is
to adjust the significance level to α/m̃, with m̃ < m.

• But we still want to control the FWER at α, so we
cannot make m̃ too small.

• The idea is that, when we have dependence between two
tests, we are potentially performing about 1.5 tests.

• This is the effective number of independent tests.
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Example

• Assume we have two covariates X1, X2 that are positively
correlated ρ = 0.5.

• If I test X1 against an outcome Y and reject the null
hypothesis, am I

• More likely to reject X2 against Y than before doing the
test?

• Less likely?
• Equally likely?
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Simulation i

library(mvtnorm)
n <- 25
B <- 1000
alpha <- 0.05

Sigma <- matrix(c(1, 0.5, 0.5, 1),
ncol = 2)
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Simulation ii

results <- replicate(B, {
X <- rmvnorm(n, sigma = Sigma)
Y <- rnorm(n)

test1 <- t.test(X[,1], Y)
test2 <- t.test(X[,2], Y)

return(c("test1" = test1$p.value,
"test2" = test2$p.value))

})
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Simulation iii

rowMeans(results < alpha)

## test1 test2
## 0.050 0.045

table(colSums(results < alpha))/B

##
## 0 1 2
## 0.925 0.055 0.020
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Simulation iv

# Now compute FWER
mean(colSums(results < alpha) > 0)

## [1] 0.075

mean(colSums(results < alpha/2) > 0)

## [1] 0.036
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Simulation v
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Multiple tests in statistical genetics Redux i

• We want to control the FWER.
• Using a Bonferroni correction is very common.

• If I have 1 million SNPs and want to control the FWER
at α = 0.05, a naive Bonferonni would reject any null
hypothesis whose p-value is smaller than 5 × 10−8

• This is a huge significance burden
• More importantly, it is probably too strict:

• SNPs are naturally correlated, due to some SNPs being
inherited together more often.

• In other words, it is very likely that we are not performing
1 million independent tests
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Enters PCA

• Gao et al suggests looking at the eigenvalues of the SNPs
correlation matrix to infer the effective number of
independent tests meff .

1. Compute the correlation matrix R of the SNP data
(i.e. independently of the outcome of interest).

2. Calculate its eignvalues λ1 > · · · > λp.
3. Let meff be the smallest m such that

∑m

i=1 λi∑p

i=1 λi
> C for a

user defined C (Gao et al suggests C = 0.995).
4. Apply a Bonferroni correction using meff , i.e. to control

the FWER at α, reject each individual test if the p-value
is less than α/meff .

49



Figure 4
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Overall Summary

• PCA is a dimension reduction method.
• Uncorrelated linear combinations with maximal variance
• Linear manifold with closest fit

• We saw how it can be used in model building and for
high-dimensional data visualization.

• We saw three applications from statistical genetics:
1. Estimate population substructure from SNP correlation

matrix.
2. Model unwanted variation from the residual covariance

matrix.
3. Estimate the effective number of independent tests from

the SNP correlation matrix.
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