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Contrast matrices

» A contrast is a linear combination 6 of variables such that
its coefficients sum to zero.
» Eg. 0=(1,-1,0)0r 6 =(2,-1,-1).
» A contrast matrix is a matrix C' whose rows are contrasts
(so the row-sums are zero) and are linearly independent.

1 -1 0
= Eg C= ]
= <1 0 —1)

= As their name suggests, contrasts and contrast matrices
are used to contrast (or compare) different combinations
of variables.



Testing Structural Relations

= Let C be a ¢ x p contrast matrix, and let Y be the
(p-dimensional) sample mean and S,,, the (p X p) sample
covariance.

= We can test the null hypothesis Hy : C'iu = 0 using
Hotelling's T

T =n(CY)(CS,CT)"HOY).

= What is the sampling distribution? CY is
g-dimensional and C'S,,C7 is ¢ x g, therefore

(n—1)q

e (n—q)

F(g,n—q).



Repeated Measurements i

= Suppose that our random sample Yq,..., Y, ~ N,(4, X)
be such that each component of Y; represent a repeated
measurement on the same experimental unit.

= E.g. Grades on different tests, blood pressure
measurements at different doctor visits.

= Question: Is there any evidence that the means differ
between the measurements?

= Or in other words: are all components of u equal?



Repeated Measurements ii

= Consider the following (p — 1) X p contrast matrix:

1 -1 0 0
1 0 -1 0
C = _
1 0 0 -1
= We thus have
M1 — f2
Oy = H1 — 3



Repeated Measurements iii

» To test the null hypothesis Hy : Cpu = 0, we use T? as
above:
T2 = n(CY)(CS,0T)H(CY),

where

(n—-1p-1)

T? ~
(n—p+1)

Fp—1,n—p+1).



library(tidyverse)
library(dslabs)

dataset <- gapminder %>%
filter(year %inj 2012:2016,
continent == "Africa") %>%

select(year, country, life_expectancy)



# (Q-plots to assess mormality

dataset %>%
ggplot (aes(sample = life_expectancy)) +
stat_qq() + stat_qq_line() +
facet_wrap(~year)



Example
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C <- matrix(c(1, -1, 0, 0, O,
1, 0, -1, 0, O,
1, 0, 0, -1, O,
1, 0, 0, 0, -1),
ncol = 5, byrow = TRUE)

## [,11 [,2]1 [,3] [,4] [,5]
## [1,] 1 -1 0 0 0
## [2,] 1 0o -1 0 0
## [3,] 1 0 0o -1 0

11



## [4,] 1 0 0 o -1
# Transform data into wide format
dataset <- dataset %>%

spread(year, life_expectancy)

head(dataset)
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#i# country 2012 2013 2014 2015 2016
## 1 Algeria 76.2 76.3 76.3 76.4 76.50
## 2 Angola 58.5 58.8 59.2 59.6 60.00
## 3 Benin 61.4 61.7 62.0 62.3 62.60
## 4 Botswana 56.5 56.9 57.3 58.7 60.13
## 5 Burkina Faso 59.9 60.3 60.6 60.9 61.20
## 6 Burundi 61.1 61.3 61.4 61.4 61.40
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# Compute test statistic
dataset <- dataset %>%
select (-country) %>%
as.matrix()
n <- nrow(dataset); p <- ncol(dataset)

mu_hat <- colMeans(dataset)

mu_hat

#it 2012 2013 2014 2015 2016
## 62.14314 62.54510 62.77843 63.27843 63.78843
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Sn <- cov(dataset)
test_statistic <- n * t(C %*% mu_hat) %*’
solve(C %x% Sn %x% t(C)) %*% (C %*% mu_hat)
const <- (n - L)*x(p - 1)/(n - p + 1)
critical _val <- const * qf(0.95, dfl1 = p - 1,
df2 =n - p + 1)

drop(test_statistic) > critical val

## [1] TRUE
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Other contrast matrices i

= What about other contrast matrices of the same size?
For example:

- 0 -1 1 0
¢ = _
0 0 0 1

= Do we get the same inference results? YES
= Let C,C be two (p — 1) X p contrast matrices.
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Other contrast matrices ii

= Since their rows are independent, there exists an
invertible (p — 1) x (p — 1) matrix B such that C' = BC.

(CY)T(CS,CTY1(CY) = (BCY)T(BCS,0TBT)"Y(BCY)
= (CY)'BY(BCS,CT" BT 'B(CY)
= (cY)T(CS,cT)yHCY)

= |n other words, we get the same test statistic whether we
use C or C.
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Confidence regions and Confidence Intervals

» As discussed earlier, we can use T? to create a confidence
region around C'Y:

(n—-1p-1)

T <
~ (n—p+1)

F.(p—1,n—p+1).

= We can also construct 72 intervals for any contrast 0:

. [am-1E-1) —
(QY:I:J —p+1) F,p—1,n—p+1) QSnQ).

= Or we can construct Bonferroni-adjusted confidence

intervals for each row ¢; of C"

(ciY + ta2p-1)(n — 1)(\/cfSnci/n)> .
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Example (cont’'d) i

alpha <- 0.05
mu_contr <- C %*% mu_hat
sample_cov <- diag(C %*% Sn %*) t(C))

mu_contr

#it [,1]
## [1,] -0.4019608
## [2,] -0.6352941
## [3,] -1.1352941
## [4,] -1.6452941
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Example (cont’d) ii

# Simultaneous CIs
simul ci <- cbind(mu_contr - sqrt(critical val*
sample cov/n),
mu_contr + sqrt(critical val
sample_cov/n))
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Example (cont’d) iii

# Bonferront adjustment
bonf ci <- cbind(mu_contr - qt(1-0.5%alpha/(p-1),
n- 1) *
sqrt (sample_cov/n),
mu_contr + qt(1-0.5%alpha/(p-1),
n - 1) *
sqrt (sample_cov/n))
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simul ci

#i#

## [1,] -0.
## [2,] -0.
## [3,] -1.
## [4,]1 -2.
bonf ci

#i#

## [1,] -0.
# [2,] -0.
## [3,] -1.

## [4,] -2.

(,1]
5902699
9641199
5762989
3083908

[,1]
5495288
8929777
4808865
1649283

[,2]

.2136517
.3064684
.6942893
.9821975

[,2]

.2543928
.3776105
. 7897017
.1256599
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Comments

» The test above is best used when we cannot make any
assumptions about the covariance structure ..
= When we assume Y has a special structure, it is possible
to build more powerful tests.
= E.g. If the repeated measurements are taken over time,
it may be reasonable to assume an autoregressive
structure.
= Similarly, if we are interested in a specific relationship
between the components of y, it is possible to build more
powerful tests.

= E.g. Linear relationship between the components when

measurements are taken over time.
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Comparing two multivariate

means

24



Equal covariance case i

= Now let's assume we have two independent multivariate
samples of (potentially) different sizes:
* Yii,..., Y, ~ Np(p,2)
= Yor,..., You, ~ Ny(u2, X)
= We are interested in testing py = puo.
= Note that we assume equal covariance for the time
being.
= Let Yy, Y, be their respective sample means, and let
S1, 59, their respective sample covariances.
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Equal covariance case ii

= First, note that

_ _ 1 1
Yi—-Yy~ N, (Ml—ﬂza <+) 2)-
ny N2
= Second, we also have that (n; — 1)S; is an estimator for
(n; — 1)%, fori=1,2.
= Therefore, we can pool both (ny —1)S; and (n2 —1)S,
into a single estimator for >:
(n1 — 1)51 + (ng = 1)52
ny+ng — 2 '

S pool —
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Equal covariance case iii

» Putting these two observations together, we get a test
statistic for Hy : p11 = ps:
2 Y, o7 [ 1 1 s Y,
T*= (Yl - YQ) < + ) Spool (Yl - Y2)

ny N2
= Under the null hypothesis, we get

(n1+n2—2)p
(n1+n2—p—1)

T? ~ F(p,ni+ns—p—1).
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datasetl <- gapminder %>7%
filter(year == 2012,
continent == "Africa",
lis.na(infant_mortality)) %>%
select(life_expectancy, infant_mortality) %>%
as.matrix()
dim(datasetl)

## [1] 51 2
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dataset2 <- gapminder %>’
filter(year == 2012,
continent == "Asia",
lis.na(infant _mortality)) %>%
select(life_expectancy, infant mortality) %>%
as.matrix()
dim(dataset?2)

## [1] 45 2
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nl <- nrow(datasetl); n2 <- nrow(dataset2)
p <- ncol(datasetl)

(mu_hatl <- colMeans(datasetl))

## life expectancy infant mortality
#i# 62.14314 52.32745

(mu_hat2 <- colMeans(dataset2))
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## life expectancy infant mortality
#i# 73.76667 20.84000

(S1 <- cov(datasetl))

#it life_expectancy infant mortality
## life_expectancy 48.7241 -107.1926
## infant_mortality -107.1926 504.2972

(S2 <- cov(dataset?2))
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#i# life_expectancy infant mortality
## life_expectancy 26.08727 -65.19568
## infant mortality -65.19568 256.40655

# Even though it doesn't look reasonable

# We will assume equal covariance for now
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mu_hat_diff <- mu_hatl - mu_hat2
S_pool <= ((n1 - 1)*S1 + (n2 - 1)*S2)/(nl1+n2-2)

test_statistic <- t(mu_hat_diff) 7%xJ
solve((n1™-1 + n27-1)*S_pool) %*’% mu_hat diff

const <- (nl1 + n2 - 2)*p/(nl + n2 - p - 2)
critical_val <- const * qf(0.95, dfl = p,
df2 = nl + n2 - p - 2)

drop(test_statistic) > critical val

## [1] TRUE =
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Unequal covariance case i

= Now let's turn our attention to the case where the
covariance matrices are not equal:
s Y., Yo, ~ Ny(u1, 51)
= Yoi,..., You, ~ Ny(u2, o)
» Recall that in the univariate case, the test statistic that is
typically used is called Welch's t-statistic.
= The general idea is to adjust the degrees of freedom of
the ¢-distribution.
= Note: This is actually the default test used by t.test!
= Unfortunately, there is no single best approximation in the
multivariate case.

35



Unequal covariance case ii

= First, observe that we have
Y - Yy~ N, (Ml Ha, *21 + " 22)
2

» Therefore, under Hy : iy = p2, we have

_ _ 1 1 -1 _ _
(- T (—Bi+ =) (%1 -T2) ~ X0)
ny Nna
= Since S; converges to YJ; as n; — 00, we can use
Slutsky's theorem to argue that if both n; — p and ny —p

are “large”, then

=1l

T2 = (¥, —%,)T ( S + n252) (V1= Ya) =~ ().
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Unequal covariance case iii

» Unfortunately, the definition of “large” in this case
depends on how different ¥; and 3, are.
= Alternatives:
= Use one of the many approximations to the null
distribution of T2 (e.g. see Timm (2002), Section 3.9;
Rencher (1998), Section 3.9.2).
= Use a resampling technique (e.g. bootstrap or
permutation test).
= Use Welch's t-statistic for each component of 1 — o
with a Bonferroni correction for the significance level.
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Nel & van der Merwe Approximation

= First, define

1 1 1 -1
ny Mo

U
= Then let

p+p?
1 (tr(W2) + tr(W3)2)

= One can show that min(ny,ns) < v < ny + ns.
» Under the null hypothesis, we approximately have

vp
TQQWF(Z%V_]?_"].)
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Example (cont’'d) i

test_statistic <- t(mu_hat diff) %x%
solve(n1™-1*S1 + n27-1%S2) %x*J, mu_hat diff

critical _val <- qchisq(0.95, df = p)

drop(test_statistic) > critical val

## [1] TRUE
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Example (cont’d) ii

W1l <- S1 %%% solve(nl”™-1*S1 + n2"-1%S2)/n1l
W2 <- S2 %x*x% solve(n1™-1%S1 + n2"-1%S2)/n2

trace_square <- sum(diag(W1%*%W1))/n1 +
sum(diag (W2%*%W2)) /n2
square_trace <- sum(diag(W1))~2/nl +

sum(diag(W2))~2/n2

(nu <- (p + p~2)/(trace_square + square_trace))

## [1] 88.85241
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Example (cont’d) iii

const <- nu*p/(nu - p - 1)
critical_val <- const * qf(0.95, dfl = p,
df2 =nu - p - 1)

drop(test_statistic) > critical val

## [1] TRUE
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= To perform the tests on means, we made two main
assumptions (listed in order of importance):
1. Independence of the observations;
2. Normality of the observations.
» Independence is the most important assumption:
= Departure from independence can introduce significant
bias and will impact the coverage probability.
= Normality is not as important:
= Both tests for one or two means are relatively robust to
heavy tail distributions.
= Test for one mean can be sensitive to skewed

distributions; test for two means is more robust.
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