
Practice problems–Bootstrap Jackknife

Problem 1

Given a dataset of n distinct values, show that the number of distinct bootstrap samples is(
2n − 1

n

)
.

How many are there for n = 15?

Problem 2

Suppose that 50 people are given a placebo and 50 are given a new treatment. Thirty placebo patients show
improvement, while 40 treated patients show improvement. Let p2 be the probability of improving under
treatment and p1 the probability of improving under placebo.

a. Consider τ = p1 − p2. Find an estimator for τ (the obvious one is good enough). Using bootstrap,
estimate its standard error and bias. Construct a 90 percent confidence interval using the method of
your choice.

b. Next, consider θ = p1/p2. Find an estimator for θ (again, the obvious one is good enough). Using
bootstrap, estimate its standard error and bias. Construct a 90 percent confidence interval using the
method of your choice.

c. Consider the null hypothesis H0 : p1 = p2. Which of the two confidence intervals above can be used to
test this hypothesis? Discuss

Problem 3

Consider the Rainfall dataset in the bootstrap package:

rainfall data. The yearly rainfall, in inches, in Nevada City, California, USA, 1873 through 1978.

For more details about each variable, have a look at ?bootstrap::Rainfall.

a. Compute the sample interquartile range (IQR) for this data.
b. Use bootstrap to estimate the bias and standard error of the sample IQR.
c. Construct a 95% confidence interval for the IQR.
d. (Bonus) Can you use the jackknife to estimate the bias and standard error of the IQR? Why?

Problem 4

Consider the following data, which represent 12 observations of failure times (in hours) of air-conditioning
equipment:
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library(boot)
str(aircondit)

## 'data.frame': 12 obs. of 1 variable:
## $ hours: num 3 5 7 18 43 85 91 98 100 130 ...

We can model this data using an exponential distribution:

f(x) = 1
β

exp
(

− x

β

)
, x > 0.

The theory of Maximum Likelihood Theory gives us an estimate of β and its standard error:

β̂ = 1
n

n∑
i=1

xi, SE(β̂) = β̂√
n

.

In other words, β̂ is the sample mean.

a. Use bootstrap to estimate the bias and standard error of the maximum likelihood estimate β̂.
b. Compare the normal and student bootstrap 95% confidence intervals with the approximate 95%

confidence interval from Maximum Likelihood theory.

Problem 5

For this problem, we will use the olympic dataset in the ade4 package, which contains the decathlon score of
33 athletes:

library(ade4)
data("olympic")
# The dataset is the first element of the list
data_olympic <- olympic$tab

str(data_olympic)

## 'data.frame': 33 obs. of 10 variables:
## $ 100 : num 11.2 10.9 11.2 10.6 11 ...
## $ long: num 7.43 7.45 7.44 7.38 7.43 7.72 7.05 6.95 7.12 7.28 ...
## $ poid: num 15.5 15 14.2 15 12.9 ...
## $ haut: num 2.27 1.97 1.97 2.03 1.97 2.12 2.06 2 2.03 1.97 ...
## $ 400 : num 48.9 47.7 48.3 49.1 47.4 ...
## $ 110 : num 15.1 14.5 14.8 14.7 14.4 ...
## $ disq: num 49.3 44.4 43.7 44.8 41.2 ...
## $ perc: num 4.7 5.1 5.2 4.9 5.2 4.9 5.7 4.8 4.9 5.2 ...
## $ jave: num 61.3 61.8 64.2 64 57.5 ...
## $ 1500: num 269 273 263 285 257 ...

We will use bootstrap and jackknife to study Principal Component Analysis (PCA). PCA is a dimension
reduction method, where we summarise a dataset by taking linear combinations of the columns that have
maximal variance: the first principal component is the linear combination with maximal variance, the
second principal component has maximal variance among all linear combinations that uncorrelated with the
first principal component, etc. The details of how to achieve this are not important for this course (see STAT
3690 for more details); we will use the function prcomp in R:
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# PCA of data_olympic
fit <- prcomp(data_olympic)
summary(fit)

## Importance of components:
## PC1 PC2 PC3 PC4 PC5
## Standard deviation 13.7807 5.8043 2.96066 0.94062 0.69811
## Proportion of Variance 0.8116 0.1440 0.03746 0.00378 0.00208
## Cumulative Proportion 0.8116 0.9555 0.99300 0.99678 0.99886
## PC6 PC7 PC8 PC9 PC10
## Standard deviation 0.34653 0.24744 0.23147 0.1563 0.08279
## Proportion of Variance 0.00051 0.00026 0.00023 0.0001 0.00003
## Cumulative Proportion 0.99938 0.99964 0.99987 1.0000 1.00000

As we can see, there are 10 principal components, and for each component, we have the Proportion of
Variance. Use the function extract_prop_var below to extract this information from fit:

extract_prop_var <- function(fit) {
if (inherits(fit, "prcomp")) {

result <- fit$sdevˆ2/sum(fit$sdevˆ2)
names(result) <- colnames(fit$rotation)

} else {
stop("This function only works with the output of prcomp.")

}
return(result)

}
# All proportions
extract_prop_var(fit)

## PC1 PC2 PC3 PC4 PC5
## 8.115669e-01 1.439729e-01 3.745910e-02 3.780982e-03 2.082723e-03
## PC6 PC7 PC8 PC9 PC10
## 5.131703e-04 2.616439e-04 2.289692e-04 1.043846e-04 2.929297e-05

# Or if you want just the first value
extract_prop_var(fit)["PC1"]

## PC1
## 0.8115669

These proportions of variance are related to the eigenvalues of the sample covariance matrix, and they can be
used to construct a test of independence between the variables in the data.

For this problem, we are interested in the first element of the vector above, which is the proportion of
variance explained by the first principal component.

a. Use jackknife to estimate both the bias and standard error of this quantity.
b. Use bootstrap to estimate both the bias and standard error of this quantity.
c. Compare the jackknife 95% confidence interval with the basic bootstrap 95% confidence interval. Which

one do you think is the most accurate? (Hint: Look at a histogram of the bootstrap samples.)
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Problem 6

Conduct a Monte Carlo study to estimate the coverage probabilities of the standard normal bootstrap
confidence interval, the basic bootstrap confidence interval, and the percentile confidence interval. Sample
from a log-normal population of your choice and check the empirical coverage rates for the sample mean.
This means you need to choose µ, σ2, and the sample size n.

Find the proportion of times that the confidence intervals miss on the left (i.e. the true value is to the left of
both bounds), and the proportion of times that the confidence intervals miss on the right (i.e. the true value
is to the right of both bounds). Note that µ is not equal to the mean of a log-normal distribution.

Discuss the results.

(Bonus): Repeat for different sample sizes. What happens when n increases?

Problem 7

Efron and Tibshirani discuss the scor dataset (available in the package bootstrap) on 88 students who took
examinations in five subjects. The first two tests (mechanics, vectors) were closed book and the last three
tests (algebra, analysis, statistics) were open book.

Each row of the data frame is a set of scores (xi1, . . . , xi5) for the i-th student.

a. Create a pairs plot for this dataset, in order to look at all pairwise comparisons. (See function pairs.)
b. Compare the plot with the sample correlation matrix.
c. Obtain bootstrap estimates of the standard errors for each of the following correlations: ρ̂12 = ρ(mec, vec),

ρ̂34 = ρ(alg, ana), ρ̂35 = ρ(alg, sta), and ρ̂45 = ρ(ana, sta).
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