
Practice problems–Generating Random Variates

Problem 1

Use the inverse-CDF transform to generate samples from the geometric distribution with parameter p and
support on the positive integers. In other words, X is the number of Bernoulli(p) trials until a first success.
You can choose p and the number of variates.

Compute the relative frequencies and compare them to the theoretical values coming from the probability
mass function. Are they similar enough? (Hint: Use the Central Limit Theorem to justify this.)

Problem 2

Using the definition of a geometric distribution, we could also draw random variates using the following
approach:

• Draw Bernoulli variates sequentially until you obtain a first success.
• If it took k trials to reach the success, then your random variate is k.
• Repeat the steps above for each new variate.

Explain why the approach above is inferior to the inverse-CDF approach in Problem 1.

Problem 3

Consider the following density function:

f(x) = 3
2(1 − x2), x ∈ (0, 1).

a. Prove that this is indeed a density, i.e. its integral over the support is equal to 1.
b. Find the CDF of this distribution.
c. Use the inverse-CDF transform to sample from this distribution. Hint: The quantile function doesn’t

have a closed form solution.

Problem 4

Given a uniform random variable X on (0, 1) and a positive real number α > 0, it follows that X1/α follows
a Beta(α, 1) distribution.

a. Use this relationship to sample 1000 variates from the Beta(α, 1) distribution for a value α of your
choice.

b. Construct a QQ-plot to assess the validity of your implementation.
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Problem 5

The Pareto(a, b) distribution has CDF

F (x) = 1 −
(

b

x

)a

, x ≥ b > 0, a > 0.

Derive the quantile function, and use the inverse-CDF transform to generate a random sample from the
Pareto(2, 2) distribution.

Problem 6

In probability theory, a copula is a multivariate distribution such that each marginal is uniform on (0, 1).
Through Sklar’s theorem, we can model any multivariate distribution as a combination of marginal distributions
and a copula.

In this exercise, we will use a Gaussian copula to combine two exponential distributions into a bivariate
distribution.

a. Read the help page for the function rmvnorm in the package mvtnorm. Use this function to generate
1000 samples from a bivariate normal with means 0, variances 1, and correlation ρ = 0.5. Produce a
scatter plot of your sample (i.e. the output will have two columns, so plot column 1 against column 2).

b. Let Φ be the CDF of a standard normal distribution (cf. pnorm). Then let F −1
1 be the quantile function

of an exponential with λ = 1, and let F −1
2 be the quantile function of an exponential with λ = 2.

Transform the bivariate normal generated in part a) using the following transformation:

g(x, y) =
(
F −1

1 (Φ(x)), F −1
2 (Φ(y))

)
.

c. Using QQ-plots, check that after transformation, the first column follows an exponential distribution
with λ = 1 and the second column follows an exponential distribution with λ = 2.

d. Compute the correlation between the two columns. Is it close to ρ = 0.5?
e. Repeat this simulation for different values of ρ. Create a scatter plot with ρ on the x-axis and the

correlation of the transformed variables on the y-axis. Do you see any relationship?

Problem 7

The density of the (standard) folded normal distribution is given by

f(x) = 2√
2π

exp
(

−1
2x2

)
, x > 0.

a. Implement the Accept-Reject algorithm to sample from the folded normal using proposals from the
exponential distribution.

b. Once you have a sample from the folded normal distribution, you can transform them into a sample
from the standard normal distribution by randomly selecting a sign (with equal probability). For
example, if you sample 2.43 from a folded normal, you can transform it into either -2.43 or 2.43 by
randomly choosing the sign. Using one of the methods discussed in class, show that this algorithm
actually gives a random sample that matches the standard normal distribution.

c. Use the algorithm in b) to give an estimate of V ar(X) with a standard error approximately equal to
0.001.
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Problem 8

We will generate random variates from a standard normal N(0, 1) using the double exponential distribution;
its density is given by

g(x | λ) = 1
2λ

exp
(

− 1
λ

|x|
)

, λ > 0.

a. Let f(x) be the density of the normal distribution. Compute the ratio f(x)/g(x | λ). Using calculus
(or any other analytic method), find a uniform upper bound C for the ratio. (Hint: The upper bound
C will be a function of λ, but not of x.)

b. Find the value λ̂ that minimizes the upper bound C.
c. Implement the Accept-Reject algorithm for sampling from N(0, 1) using proposals from g(x | λ̂). To

generate samples from a double exponential distribution, you can use the function rdoublex from the
smoothmest package.

Problem 9

Suppose we want to sample from a density f(x) which we only know up to a constant:

f(x) ∝ exp
(

−1
3 |x|3

)
, x ∈ R.

In other words, we have f(x) = M exp
(
− 1

3 |x|3
)

for an unknown constant M > 0.

a. Explain why we can still sample from this density using the Accept-Reject algorithm even if we don’t
know M .

b. Find a proposal density and implement the Accept-Reject algorithm to sample from f .
c. Bonus Explain how you could use this sample to estimate M .
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