Practice problems—Numerical Methods

Problem 1

Recall that the secant method starts with two initial values $x_0 \neq x_1$ and constructs a sequence:

$$x_n = x_{n-1} - f(x_{n-1}) \frac{x_{n-1} - x_{n-2}}{f(x_{n-1}) - f(x_{n-2})}$$

Show that the secant iterations can be redefined as

$$x_n = \frac{x_{n-1}f(x_{n-2}) - x_{n-2}f(x_{n-1})}{f(x_{n-2}) - f(x_{n-1})}$$

Problem 2

This problem is adapted from Süli & Mayers An Introduction to Numerical Analysis (2003). They define a variant of the secant method as follows. Define two sequences u_n and v_n such that all the values $f(u_n)$, n = 0, 1, 2, ..., have one sign, and all the values $f(v_n)$, n = 0, 1, 2, ..., have the opposite sign. From these two sequences, we define

$$w_n = \frac{u_n f(v_n) - v_n f(u_n)}{f(v_n) - f(u_n)}, \qquad n = 0, 1, 2, \dots$$

Finally, define $u_{n+1} = w_n$, $v_{n+1} = v_n$ if $f(w_n)$ has the same sign as $f(u_n)$, and otherwise define $u_{n+1} = u_n$, $v_n + 1 = w_n$.

In other words, start with two initial values u_0, v_0 such that $f(u_0), f(v_0)$ have different signs, compute w_0 and update both sequences depending on the sign of $f(w_0)$ and make sure the sign constrain is satisfied for both sequences. Continue until convergence.

Implement this algorithm in R, and use your implementation to find the root of the function

$$f(x) = \exp(x) - x - 2.$$

You can use $u_0 = 0, v_0 = 2$.

Problem 3

In this problem, you will implement Brent's method. Recall the algorithm from the lecture.

Algorithm

Start with interval [a, b] and continuous function f(x). The values f(a), f(b) have opposite signs.

1. Define a third point (c, f(c)), where c is the value at which a linear interpolation crosses the x-axis. Depending on the sign of f(c), we know the solution f(x) = 0 falls inside the interval (a, c) or (c, b).

- 2. Fit a sideways parabola to all three points, and find the intersection x_1 with the x-axis. If x_1 falls outside the interval from Step 1, replace x_1 by the midpoint of the interval (i.e. bisection).
- 3. Repeat until convergence.

Answer the following questions.

- a. Look at the help page for the function poly_calc in the package PolynomF. Explain how you can use it to find the *sideways* parabola passing through three points $(x_1, f(x_1)), (x_2, f(x_2))$, and $(x_3, f(x_3))$.
- b. Assume poly_fun is the output of poly_calc as used in part a. to fit a sideways parabola. Explain how you can use poly_fun to compute the value x at which the parabola crosses the x-axis.
- c. Use the answers from the previous two parts to implement Brent's algorithm in R. Use your implementation to find the root of the function $f(x) = \exp(x) x 2$. You can use the interval [0,2].
- d. Compare your answer with the one you get from using uniroot (both the root and the number of iterations). Are they the same?
- e. Look at the Wikipedia page on Brent's algorithm: https://en.wikipedia.org/wiki/Brent%27s_method. Describe how the actual algorithm differs from the description above. This is why we use the implementation from uniroot!