
Practice problems–Permutation Tests

Problem 1

In the lecture notes on Permutation tests, I mentioned that bootstrap hypothesis tests tend to be less powerful
than permutation tests. Design and conduct a simulation study to compare the power between a bootstrap
and permutation test, using a difference of means as the test statistic.

You will need to specify the following quantities:

• The number of simulations N .
• The sample sizes nX , nY of both samples.
• The distribution FX of the sample X1, . . . , XnX

.
• The distribution FY of the sample Y1, . . . , YnY

.
• The difference ∆ = µX − µY between the population means.

Problem 2

Show that the following statistics lead to equivalent permutation tests for the equality of two population
means:

a) the sum of the observations in the smallest sample;
b) the difference between the sample means;
c) the t-statistic.

In other words, given a set of permutations of the data and significance level α, one of these tests will reject
the null hypothesis if and only if all tests reject the null hypothesis.

Hint: The sum of all the observations, the sum of the squares of all the observations, and the sample sizes
are invariant under permutations.

Problem 3

Consider the varespec dataset from the vegan package:

library(vegan)
data(varespec)
dim(varespec)

## [1] 24 44

Each column represents cover values for 44 species of lichen, measured in 24 different sites. The first 16 rows
correspond to grazed pastures; the last 8 rows correspond to ungrazed pastures. See ?vegan::varespec for
more details.

For this problem, we will focus on one species: Cladonia coccifera.
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# Cover values for Clad. Coccifera
comb_data <- varespec$Cladcocc
# Two groups: grazed vs ungrazed
groups <- factor(c(rep(1, 16), rep(2, 8)),

labels = c("grazed", "ungrazed"))

We are interested in comparing the distribution of cover values of Cladonia coccifera in grazed and ungrazed
pastures.

a. Use bootstrap to construct a 95% confidence interval for the difference in means. You can choose
any type of confidence interval.

b. Using a permutation test, compute a p-value using the difference in sample means, under the null
hypothesis that both population means are equal.

c. Using a permutation test, compute a p-value using the t statistic, under the null hypothesis that both
population means are equal. You can use the statistic from Welch’s t-test, or from a two-sample t-test
with equal variances.

d. Using a permutation test, compute a p-value using the ratio of sample variances as your statistic,
under the null hypothesis that both population variances are equal. (Hint: Think very carefully about
whether you want a one-sided or two-sided p-value, and what it means for a ratio of variances to be
“more extreme” than a certain value. It may be helpful to transform the ratio first.)

e. (Bonus): Using a permutation test, compute a p-value using the Kolmogorov-Smirnov test statistic,
under the null hypothesis that both distributions are equal. Give an interpretation for the results of all
five hypothesis tests.

Problem 4

We will use the fastfood dataset from the openintro package.

This dataset contains nutritional information about several meals offered in major fast-food chains. We
will focus on two restaurants: Taco Bell and Burger King. To answer the questions below, we first need to
restrict our dataset to only these two restaurants. by running the codebelow:

a. Using the difference in sample means as your statistic, perform a permutation test and compute a
p-value for the null hypothesis that the distribution of calories is the same for both Taco Bell and
Burger King. At significance level α = 0.05, should we reject the null hypothesis?

b. Using bootstrap, construct a 95% confidence interval for the difference in means. You can choose any
type of bootstrap confidence interval, except the percentile interval.

c. Consider the simple linear regression model where calories is the outcome and sodium is the covariate.
Perform a residual analysis for this model.

d. Construct a 95% bootstrap confidence interval for the estimate of the slope (i.e. the coefficient corre-
sponding to sodium). Be explicit about which type of resampling approach you chose, and explain why
you chose it.

Problem 5

Consider the following 2 × 2 contingency table, describing gender distribution and whether a student’s major
is statistics, for a given course:

Male students Female students
Stats major 1 9
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Male students Female students
Non-Stats major 11 3

The null hypothesis is that male and female students are equally likely to have statistics as their major.

Using Fisher’s exact test, compute a p-value for this null hypothesis.

Problem 6

This topic is more advanced, and I’ve included it only for your personal interest.

As we briefly mentioned in class, permutation tests can be used to test for independence. Recall the general
idea: suppose we have two variables X, Y (they could also be random vectors), with FX , FY the ma rginal
distributions and FXY the joint distribution. Then independence is equivalent to FXY = FXFY . This means
that independence between X and Y corresponds to the following null hypothesis:

H0 : FXY = FXFY .

If we assume our data follows a normal distribution, then independence is equivalent to having no correlation.
In that special case, we could test for independence by building a correlation test:

H0 : Corr(X, Y ) = 0.

But in general, independence is stricter than no correlation. For that reason, we need a different test statistic.

Székely, Rizzo, and Bakirov (2007) introduced the notion of distance correlation for exactly that purpose:
they were looking for a measure of dependence that would be equal to zero if and only if the variables X, Y
are independent. Their definition is valid for random vectors X, Y of different lengths. But for the purposes
of this discussion, we will focus on X, Y random variables.

Here are the definitions. Let (X1, Y1), . . . , (Xn, Yn) be a sample of size n (so both variables are measured on
the same experimental unit). Define two n × n matrices:

akℓ = |Xk − Xℓ|, bkℓ = |Yk − Yℓ|.

Next, create two new n × n matrices from the previous ones by subtracting the row means, the column means,
and adding back the overall mean:

Akℓ = akℓ − āk· − ā·ℓ + ā··,

Bkℓ = bkℓ − b̄k· − b̄·ℓ + b̄··.

Next, define the empirical distance covariance as follows:

V (X, Y ) = 1
n2

n∑
k=1

n∑
ℓ=1

AkℓBkℓ,

V (X) = 1
n2

n∑
k=1

n∑
ℓ=1

A2
kℓ,

V (Y ) = 1
n2

n∑
k=1

n∑
ℓ=1

B2
kℓ.

Finally, the empirical distance correlation is defined as:

R(X, Y ) = V (X, Y )√
V (X)V (Y )

,

3



as long as the denominator is nonzero. Otherwise, we set R(X, Y ) = 0.

How should we permute the data? If the data were independent, then pairing observations (Xi, Yi) would
be meaningless: the pair would be as likely as (Xi, Yj) for any j = 1, . . . , n. This gives us a h int for how
the data should be permuted: permute the values of the vector (X1, . . . , Xn) or (Y1, . . . , Yn) (no need to do
both), and recompute the estimate.

a. Create a function compute_distcor, which takes two vectors xvec and yvec as input, and outputs the
distance correlation.

b. Using one of the datasets we saw in class (e.g. bootstrap::law or bootstrap::scor), test the inde-
pendence hypothesis using the distance correlation and a permutation test.
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