
Monte Carlo Integration

Max Turgeon

STAT 3150–Statistical Computing

Lecture Objectives

• Understand what Monte Carlo integration is and why it works.
• Be able to use random sampling to estimate statistical
quantities of interest.

• Learn about strategies for reducing the variance of the
estimates.

2

Motivation

• Many statistical quantities of interest can be defined as
integrals.

• E.g. the expectation.

• But symbolic integration is difficult, and some functions don’t
have anti-derivatives!

• We will see how integrals can be estimated by taking the
average of a suitable collection of random variates.

• In Module 9, we’ll talk about numerical integration, which can
also be used instead of symbolic integration.

3

Simple motivating example i

• Imagine we want to estimate the following definite integral:∫ 1

0
e−xdx.

• From Calculus, we know that G(x) = −e−x is an
anti-derivative for g(x) = e−x, and so we can quickly check
that the integral is equal to 1 − e−1 ≈ 0.6321.

• Let’s generate uniform variates on (0, 1) and take the average
of their image by g:

4

Simple motivating example ii

n <- 1000
unif_vars <- runif(n)
mean(exp(-unif_vars))

[1] 0.6391107

Compare to actual value
1 - exp(-1)

[1] 0.6321206

5

Simple motivating example iii

• What’s going on? If we write X1, . . . , Xn for the uniform
variates, the Law of Large Numbers tells us that

1
n

n∑
i=1

g(Xi) → E(g(X)), where X ∼ U(0, 1).

• But since the density of a uniform random variable on (0, 1)
is just the constant function 1, we have

E(g(X)) =
∫ 1

0
g(x)dx.

• Let’s see what happens if we try on the interval (0, 2):

6

Simple motivating example iv

unif_vars <- runif(n, max = 2)
mean(exp(-unif_vars))

[1] 0.4163901

Compare to actual value
1 - exp(-2)

[1] 0.8646647

• Something isn’t right… We get about half of what we expect…

7

Simple motivating example v

• That’s because the density of a uniform variable on (0, 2) is
no longer the constant function 1, but rather the constant
function 1/2:

1
n

n∑
i=1

g(Xi) → 1
2

∫ 2

0
g(x)dx.

• Therefore, we need to multiply the sample mean by 2:

2*mean(exp(-unif_vars))

[1] 0.8327802

8

Simple Monte Carlo integration

Let g(x) be an integrable function defined on the bounded interval
(a, b). To estimate the integral∫ b

a
g(x)dx,

follow this algorithm:

1. Generate X1, . . . , Xn independently from a uniform
distribution on (a, b).

2. Compute the sample mean g(X) = 1
n

∑n
i=1 g(Xi).

3. Estimate the integral via (b − a)g(X).

9

Exercise

Use Monte-Carlo integration to estimate

∫ π/2

0
cos(x)dx.

Compare the estimate with the theoretical value.

10

Solution

n <- 1000
unif_vars <- runif(n, min = 0, max = 0.5*pi)
0.5*pi*mean(cos(unif_vars))

[1] 1.001951

Compare to actual value
sin(0.5*pi) - sin(0)

[1] 1

11

Slightly more complex example i

• Once we know that the LLN is working under the hood, we can
expand our application beyond the uniform distribution.

• Let X be a continuous variable with density f . Then we know
that

E(g(X)) =
∫ ∞

−∞
g(x)f(x)dx.

• Therefore, if we generate X1, . . . , Xn independently from f ,
we can estimate E(g(X)) using

g(X) = 1
n

n∑
i=1

g(Xi).

12

Slightly more complex example ii

• We will apply these ideas to the following integral:

∫ ∞

0

e−x

1 + x
dx.

• This integral is the product of a function g(x) = 1
1+x

and the
density of an exponential Exp(1). In other words:

∫ ∞

0

e−x

1 + x
dx = E

(1
1 + X

)
,

where X ∼ Exp(1).

13

Slightly more complex example iii

n <- 1000
exp_vars <- rexp(n)
mean(1/(1 + exp_vars))

[1] 0.5881713

14

Variance and standard error i

• As we saw earlier, MC integration with n = 1000 samples gave
an estimate “close” to the true value.

• Can we measure how close?

• Let θ̂ = 1
n

∑
i = 1nf(Xi) be our sample mean.

• By the LLN, it converges to θ = E(f(X)).

• Exercise: If σ2 is the variance of f(X), check that the
variance of θ̂ is equal to σ2/n.

• For a general function f(x), we don’t know the variance σ2,
so we need to estimate it:

σ̂2 = 1
n

n∑
i=1

(
f(Xi) − θ̂

)2
.

15

Variance and standard error ii

• Now, we can use the Central Limit Theorem:

θ̂ − θ√
σ̂2/n

→ N(0, 1).

• We can construct an approximate 95% confidence interval
around θ̂ as follows:

θ̂ ± 1.96
√

σ̂2/n.

16

Examples i

The first uniform example
n <- 1000
unif_vars <- runif(n)
theta_hat <- mean(exp(-unif_vars))
sigma_hat <- sd(exp(-unif_vars))

c(”Lower” = theta_hat - 1.96*sigma_hat/sqrt(n),
”Upper” = theta_hat + 1.96*sigma_hat/sqrt(n))

Lower Upper
0.6243495 0.6467928

17

Examples ii

Exponential example
exp_vars <- rexp(n)
theta_hat <- mean(1/(1 + exp_vars))
sigma_hat <- sd(1/(1 + exp_vars))

c(”Lower” = theta_hat - 1.96*sigma_hat/sqrt(n),
”Upper” = theta_hat + 1.96*sigma_hat/sqrt(n))

Lower Upper
0.5764334 0.6032133

18

Exercise

Use Monte-Carlo integration to find an estimate of

∫ ∞

−∞

x2
√

2π
exp

(
−1

2
x2

)
dx.

Compute a 95% confidence interval for your estimate

19

Solution i

• First, we need to realize that we have

∫ ∞

−∞

x2
√

2π
exp

(
−1

2
x2

)
dx = E(X2), X ∼ N(0, 1).

n <- 3150
norm_vars <- rnorm(n)
theta_hat <- mean(norm_vars^2)
theta_hat

[1] 1.027801

20

Solution ii

sigma_hat <- sd(norm_vars^2)

c(”Lower” = theta_hat - 1.96*sigma_hat/sqrt(n),
”Upper” = theta_hat + 1.96*sigma_hat/sqrt(n))

Lower Upper
0.9760703 1.0795310

21

Convergence i

• How can we assess convergence of our Monte Carlo estimate?

• Look at trace plots

• A trace plot displays the estimate as a function of the sample
size.

• Instead of recomputing for different sample sizes, use
dplyr::cummean function to compute the cumulative mean.

22

Convergence ii

library(dplyr)
Recall our first example
n <- 1000
unif_vars <- runif(n)
theta_hat <- cummean(exp(-unif_vars))

plot(theta_hat,
type = ”l”)

23

Convergence iii

0 200 400 600 800 1000

0.
60

0.
65

0.
70

0.
75

0.
80

Index

th
et

a_
ha

t

24

Convergence iv

• We have evidence of convergence, because the line has
stopped “bouncing around”, i.e. the movement happens in a
very narrow range.

• Using our computations above, we can also put a confidence
band around the trace plot.

25

Convergence v

sigma2_hat <- cumstats::cumvar(exp(-unif_vars))
sigma_hat <- sqrt(sigma2_hat)

plot(theta_hat, type = ”l”)
lines(theta_hat + 1.96*sigma_hat/sqrt(seq(1, n)),

lty = 2)
lines(theta_hat - 1.96*sigma_hat/sqrt(seq(1, n)),

lty = 2)

26

Convergence vi

0 200 400 600 800 1000

0.
60

0.
65

0.
70

0.
75

0.
80

Index

th
et

a_
ha

t

27

Convergence vii

• Can we find an example that doesn’t converge?
• Recall: the LLN requires that the expectation of the random
variables be finite.

• So we can cook up an example using the Cauchy distribution.

n <- 1000
cauchy_vars <- rcauchy(n)
theta_hat <- cummean(cauchy_vars)

plot(theta_hat,
type = ”l”)

28

Convergence viii

0 200 400 600 800 1000

−
3

−
2

−
1

0
1

2

Index

th
et

a_
ha

t

29

Example i

• Let’s say we want to estimate the following integral:

∫ 1

0

1
x

dx.

- Can you spot the problem?

n <- 1000000
unif_vars <- runif(n)
theta_hat <- mean(1/unif_vars)
sigma_hat <- sd(1/unif_vars)
c(theta_hat, sigma_hat/sqrt(n))

30

Example ii

[1] 14.766915 1.357105

Let's look at a trace plot
theta_hat <- cummean(1/unif_vars)
We'll only look at every 100th value
index_val <- seq(100, n, by = 100)
plot(x = index_val,

y = theta_hat[index_val],
type = ”l”)

31

Example iii

0e+00 2e+05 4e+05 6e+05 8e+05 1e+06

4
6

8
10

12
14

index_val

th
et

a_
ha

t[i
nd

ex
_v

al
]

32

Example iv

• Conclusion: Be careful! Monte Carlo integration will always
give you a number. It’s your job as a statistician to decide if
you can trust it.

• In this example, we knew from calculus that the integral is
infinite.

• In general cases, either prove analytically the integral exists,
or at least look at a trace plot.

33

Variance reduction i

• We argued above using the CLT that the standard error of our
estimate is

σ√
n

.

• The parameter σ is a constant–it’s determined by the integral
we are trying to estimate.

• σ2 = Var(f(X))

• Therefore, the only parameter we can control is n.
• By increasing n, we can decrease the standard error.

• But because of the square root in the denominator,
improvements are smaller as n increases.

34

Variance reduction ii

• For example, if for n1 samples, the standard error is
approximately 0.01, you need to increase the sample size by a
factor of 1002 = 10000 to decrease the standard error to
0.0001.

• In other words, we would need n2 = 10000n1 random
samples!

35

Example i

Going back to second example
Recall: Need to multiply by 2!
n <- 1000
unif_vars <- runif(n, max = 2)
theta_hat <- 2*mean(exp(-unif_vars))
sigma_hat <- 2*sd(exp(-unif_vars))
sigma_hat/sqrt(n)

[1] 0.01566232

36

Example ii

What if we want a standard error of 0.0001?
factor <- (sigma_hat/sqrt(n)/0.0001)^2
(n2 <- factor * n)

[1] 24530836

unif_vars2 <- runif(n2, max = 2)
2*sd(exp(-unif_vars2))/sqrt(n2)

[1] 0.00009766062

37

Antithetic variables i

• Antithetic variables is a general strategy for reducing the
variance without changing the sample size.

• The motivation is as follows: if we have random variables
X, Y , the variance of their average is

Var
(

X + Y

2

)
= 1

4
Var (X + Y)

= 1
4

(Var(X) + Var(Y) + 2Cov(X, Y)) .

• If X and Y are independent, their covariance is zero and the
variance of the sample mean is

1
4

(Var(X) + Var(Y)) .

38

Antithetic variables ii

• However, if X and Y are negatively correlated, we can
actually achieve a smaller variance.

• For example, if U ∼ U(0, 1), then X = U and Y = 1 − U

are uniform on (0, 1), and they are negatively correlated:
Cov(U, 1 − U) = −1/12 (check this!)

39

Monotone functions

• More generally, we are interested in the following question: if
f is an integrable function, U ∼ U(0, 1), when are f(U) and
f(1 − U) negatively correlated.

• Answer: when f is a monotone function.

• Recall the following definitions:
• We say f is increasing if f(x) ≤ f(y) whenever x ≤ y.
• We say f is decreasing if f(x) ≥ f(y) whenever x ≤ y.
• We say f is monotone if f is either increasing or decreasing.

40

Example i

• We will look at the following integral:∫ 1

0
sin

(
πx

2

)
dx.

• Note that on this interval, the function f(x) = sin
(

πx
2

)
is

increasing.
• We will compare both the classical approach and the one
based on antithetic variables.

41

Example ii

Classical approach
n <- 1000
unif_vars <- runif(n)
theta_hat <- mean(sin(0.5*pi*unif_vars))
sigma_hat <- sd(sin(0.5*pi*unif_vars))
c(theta_hat, sigma_hat/sqrt(n))

[1] 0.631841864 0.009922351

42

Example iii

Antithetic variables
n <- 500
unif_vars <- runif(n)
theta_hat <- mean(sin(0.5*pi*c(unif_vars,

1 - unif_vars)))
sigma_hat <- sd(sin(0.5*pi*c(unif_vars,

1 - unif_vars)))
c(theta_hat, sigma_hat/sqrt(2*n))

[1] 0.645442845 0.009137123

43

Example iv

• In other words, we get the same standard error with half the
number of samples.

44

Exercise

Use antithetic variables and Monte Carlo integration to find an
estimate of

∫ ∞

0

e−x

1 + x
dx.

Hint: How can we generate exponential variates from uniform ones?

45

Solution i

• We know from the last module that if U ∼ U(0, 1), we also
have

− log(U) ∼ Exp(1), − log(1 − U) ∼ Exp(1).

Classical approach
n <- 1000
exp_vars <- rexp(n)
theta_hat <- mean(1/(1 + exp_vars))
sigma_hat <- sd(1/(1 + exp_vars))
c(theta_hat, sigma_hat/sqrt(n))

46

Solution ii

[1] 0.602037918 0.006915875

Antithetic variables
n <- 1000
unif_vars <- runif(n)
exp_vars <- c(-log(unif_vars), -log(1 - unif_vars))
theta2_hat <- mean(1/(1 + exp_vars))
sigma2_hat <- sd(1/(1 + exp_vars))
c(theta2_hat, sigma2_hat/sqrt(2*n))

[1] 0.595986963 0.004988703

47

Control variates i

• Control variates are a more general idea than antithetic
variables.

• The setting is the same: we want to estimate θ = E(g(X)).
• Now, let’s assume that for a function h, we know the value

µ = E(h(X)).
• E.g. h(x) = x implies µ is the mean of X .

• For any constant c ∈ R, we can define

θ̂c = g(X) + c(h(X) − µ).

• Exercise: Check that E(θ̂c) = θ for all c.

48

Control variates ii

• Let’s compute the variance of θ̂c:

Var
(
θ̂c

)
= Var (g(X) + c(h(X) − µ))

= Var (g(X)) + c2Var (h(X)) + 2cCov (g(X), h(X)) .

• The variance of θ̂c is a function of c, and it attains its
minimum at

c∗ = −Cov (g(X), h(X))
Var (h(X))

.

• No free lunch: We still need to compute Cov (g(X), h(X))
and Var (h(X))…

49

Example i

• The exponential expectation:

∫ ∞

0

e−x

1 + x
dx.

• Let’s take h(x) = 1 + x. Then if X ∼ Exp(1), we know

E(1 + X) = 2, Var(1 + X) = 1.

50

Example ii

• To compute the covariance, note that

E(g(X)h(X)) =
∫ ∞

0
g(X)h(X) exp(−x)dx

=
∫ ∞

0

1 + x

1 + x
exp(−x)dx

=
∫ ∞

0
exp(−x)dx

= 1.

51

Example iii

• From this, we get

Cov (g(X), h(X)) = E(g(X)h(X)) − E(g(X))E(h(X))
= 1 − 2E(g(X)).

• Wait: we can’t compute the covariance analytically without
knowing E(g(X)). But if we knew that quantity, we wouldn’t
need MC integration…

• Solution: Estimate Cov (g(X), h(X)) using the sample
covariance.

52

Example iv

n <- 1000
exp_vars <- rexp(n)
g_est <- 1/(1 + exp_vars)
h_est <- 1 + exp_vars

(c_star <- -cov(g_est, h_est)) # Var(h(X)) = 1

[1] 0.2049537

53

Example v

thetac_hat <- mean(g_est + c_star*(h_est - 2))
sigmac_hat <- sd(g_est + c_star*(h_est - 2))
c(thetac_hat, sigmac_hat/sqrt(n))

[1] 0.599136914 0.003488882

Compare variance of classical MC vs control vars
(var(g_est) - sigmac_hat^2) / var(g_est)

[1] 0.7542338

54

Example vi

• In other words, by using a control variate, we reduced the
variance by approximately 75%!

55

