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Lecture Objectives

• Learn how to compute the different bootstrap confidence
intervals.

• Understand their theoretical properties.
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Motivation

• So far, we’ve mostly built CIs using the CLT, and we can
certainly do so with bootstrap.

• But since we are (sort of) sampling from the sampling
distribution, we can actually do better.
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Bootstrap confidence intervals

• There are several ways to construct confidence intervals in
bootstrap:

• Standard normal bootstrap
• Bootstrap percentile
• Basic bootstrap
• Student bootstrap
• BCa interval

• They all have different properties, and they can all be useful
depending on the context.
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Standard normal bootstrap CI i

• This is similar to what we’ve been doing until now.
• It relies on the Central Limit Theorem:

θ̂ − E(θ̂)
SE(θ̂)

→ N(0, 1).

• If we estimate b̂ias(θ̂) and SE(θ̂) using bootstrap, then we
can construct an approximate 100(1 − α)% confidence
interval for θ via

θ̂ − b̂ias(θ̂) ± zα/2SE(θ̂).
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Standard normal bootstrap CI ii

• This interval is easy to compute, but it assumes that the
sampling distribution is approximately normal.

• Works well for estimators θ̂ that can be expressed as a sample
mean (e.g. Monte Carlo integration)

• Doesn’t work well when the sampling distribution is skewed.
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Bootstrap percentile CI

• Let θ̂(b), b = 1, . . . , B be the bootstrap estimates.
• The bootstrap percentile confidence interval is the interval of
the form (θ̂α/2, θ̂1−α/2), where θ̂α/2 and θ̂1−α/2 are the
α/2-th and 1 − α/2-th sample quantiles of the bootstrap
estimates, respectively.

• Don’t be fooled by its simplicity! Its validity actually requires
strong assumptions (see notes on UM Learn).

• In particular, when bias is large, you can get unrealistic CIs.
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Basic bootstrap CI i

• This is also known as the pivotal bootstrap CI.
• It is very similar to the bootstrap percentile approach, but
instead of taking the sample quantiles of θ̂(b), b = 1, . . . , B,
we take the sample quantiles of the pivot quantities θ̂(b) − θ̂,
b = 1, . . . , B.

• Note that the β-th quantile of θ̂(b) − θ̂ is equal to θ̂β − θ̂,
where θ̂β is the β-th quantile of θ̂(b).

• To build the basic bootstrap CI, we take θ̂ minus some critical
values. But instead of using the critical values of the standard
normal, we take our critical values from the pivot quantities:

θ̂ − (θ̂β − θ̂) = 2θ̂ − θ̂β.
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Basic bootstrap CI ii

• Therefore, the basic bootstrap 100(1 − α)% confidence
interval for θ is

(2θ̂ − θ̂1−α/2, 2θ̂ − θ̂α/2).

• Why use basic over percentile? It turns out the basic
bootstrap CI has better theoretical properties and stronger
convergence guarantees.
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Example i

We will compute the above 3 types of confidence intervals for the
correlation between LSAT and GPA scores.

library(bootstrap)
B <- 5000
n <- nrow(law)
boot_rho <- replicate(B, {
# Sample with replacement
indices <- sample(n, n, replace = TRUE)
cor(law$LSAT[indices], law$GPA[indices])

})
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Example ii

rho_hat <- cor(law$LSAT, law$GPA)
bias <- mean(boot_rho) - rho_hat
se <- sd(boot_rho)

# 1. Standard normal
c(rho_hat - bias - 1.96*se,

rho_hat - bias + 1.96*se)

## [1] 0.5200736 1.0418491
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Example iii

# 2. Bootstrap percentile
quantile(boot_rho,

probs = c(0.025, 0.975))

## 2.5% 97.5%
## 0.4553849 0.9628290
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Example iv

# 3. Basic bootstrap
crit_vals <- quantile(boot_rho,

probs = c(0.025, 0.975))
c(2*rho_hat - crit_vals[2],
2*rho_hat - crit_vals[1],
use.names = FALSE)

## [1] 0.589920 1.097364
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Example v

Table 1: Only the percentile method gives a sensible confidence interval,
i.e. a CI that is contained within the interval (−1, 1).

Method 95% CI

Standard Normal (0.52, 1.04)
Percentile (0.46, 0.96)
Basic Bootstrap (0.59, 1.1)
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Example vi
Histogram of boot_rho
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Student bootstrap CI i

• This confidence interval accounts for the fact we have to
estimate the standard error.

• However, it is much more involved: we can construct an
approximate 100(1 − α)% confidence interval for θ via(

θ̂ − t∗
1−α/2SE(θ̂), θ̂ − t∗

α/2SE(θ̂)
)

,

where t∗
1−α/2 and t∗

α/2 are computed using a double
bootstrap, and where SE(θ̂) is the usual bootstrap estimate
of the standard error.
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Student bootstrap CI ii

Algorithm

1. For each bootstrap sample estimate θ̂(b), compute a “t-type”
statistic t(b) = θ̂(b)−θ̂

SE(θ̂(b)) , where SE(θ̂(b)) is specific to the b-th
sample, and it can be computed using bootstrap on the
samples X

(b)
1 , . . . , X(b)

n .
2. From the sample t(b), b = 1, . . . , B, let t∗

1−α/2 and t∗
α/2 be the

1 − α/2-th and α/2-th sample quantiles.

This confidence interval is more accurate than the standard normal
bootstrap CI, but this accuracy comes with a large computational
cost.
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Example (cont’d) i

# 4. Student bootstrap
boot_rho_t <- replicate(B, {
indices <- sample(n, n, replace = TRUE)
rho_b <- cor(law$LSAT[indices], law$GPA[indices])
double_boot <- replicate(100, {
double_ind <- sample(indices, n, replace = TRUE)
cor(law$LSAT[double_ind], law$GPA[double_ind])

})
tb <- (rho_b - rho_hat)/sd(double_boot)
return(c(rho_b, tb))

})

18



Example (cont’d) ii

# The output has two rows:
# First row: rho_b values
# Second row: tb values
str(boot_rho_t)

## num [1:2, 1:5000] 0.7932 0.1144 0.7741 -0.0215
0.5658 ...

# SE estimated using rho_b values
SE <- sd(boot_rho_t[1,])
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Example (cont’d) iii

# t critical values
tcrit_vals <- quantile(boot_rho_t[2,],

probs = c(0.025, 0.975))

c(rho_hat - tcrit_vals[2]*SE,
rho_hat - tcrit_vals[1]*SE,
use.names = FALSE)

## [1] -0.3212171 0.9898829

• This is a valid confidence interval, but it is much wider than
the other three!

20



BCa confidence intervals i

• The BCa confidence interval is an improvement on the
bootstrap percentile approach.

• “BCa” stand for “bias-corrected” and “adjusted for
acceleration”.

• Let Φ be the CDF of the standard normal distribution.

• The BCa confidence interval is defined using quantiles of the
bootstrap sample: (θ̂β1 , θ̂β2), where

β1 = Φ
(

ẑ0 +
ẑ0 + zα/2

1 − â(ẑ0 + zα/2)

)
,

β2 = Φ
(

ẑ0 +
ẑ0 + z1−α/2

1 − â(ẑ0 + z1−α/2)

)
.
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BCa confidence intervals ii

• The quantities ẑ0 and â are correction factors for bias and
skewness, respectively.

• If we have ẑ0 = 0 and â = 0, then the formulas above
simplify to β1 = α/2 and β2 = 1 − α/2, and the BCa
interval then becomes the same as the bootstrap percentile.

• The bias correction factor is defined as

ẑ0 = Φ−1
(

1
B

B∑
b=1

I(θ̂(b) < θ̂)
)

,

where Φ−1 is the quantile function from the standard normal
distribution.
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BCa confidence intervals iii

• Note that ẑ0 = 0 if and only if θ̂ is the median of the
bootstrap samples.

• The acceleration factor is estimated using jackknife:

â =
∑n

i=1(θ(·) − θ̂(i))3

6
(∑n

i=1

(
θ(·) − θ̂(i)

)2
)3/2 ,

where θ(·) is the sample mean of the jackknife estimates θ̂(i).

• Note:for Student, we need a second level of bootstrap.
• This leads to a total of B1 · B2 iterations, where B1 and B2

are the number of bootstrap samples at each level.
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BCa confidence intervals iv

• On the other hand, for the BCa interval, the bootstrap and the
jackknife are done independently.

• This leads to a total of B + n iterations, which is typically less
than B1 · B2.
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Example (cont’d) i

# First estimate z0 hat
z0_hat <- qnorm(mean(boot_rho < rho_hat))
z0_hat

## [1] -0.1206099
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Example (cont’d) ii

# Next: Jackknife
rho_i <- numeric(n)

for (i in 1:n) {
rho_i[i] <- cor(law$LSAT[-i], law$GPA[-i])

}
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Example (cont’d) iii

# Then estimate a hat
rho_bar <- mean(rho_i)
ahat_num <- sum((rho_bar - rho_i)^3)
ahat_denom <- 6*sum((rho_bar - rho_i)^2)^(3/2)
(a_hat <- ahat_num/ahat_denom)

## [1] -0.07567156

27



Example (cont’d) iv

# Putting everything together
beta1 <- pnorm(z0_hat + (z0_hat - 1.96) /

(1 - a_hat*(z0_hat - 1.96)))
beta2 <- pnorm(z0_hat + (z0_hat + 1.96) /

(1 - a_hat*(z0_hat + 1.96)))
c(beta1, beta2)

## [1] 0.004798663 0.932417162
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Example (cont’d) v

# BCa interval
quantile(boot_rho, probs = c(beta1, beta2))

## 0.4798663% 93.24172%
## 0.3202500 0.9396505

# Compare with percentile
quantile(boot_rho, probs = c(0.025, 0.975))

## 2.5% 97.5%
## 0.4553849 0.9628290
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Theoretical properties i

• Two theoretical properties of interest:
• Transformation invariant: If (a, b) is a confidence interval for
a parameter θ, then for any monotone transformation m, the
interval (m(a), m(b)) is a confidence interval for the
parameter m(θ).

• Accuracy: We say a confidence interval is first-order accurate if
its error goes to zero at the same rate as 1/

√
n; we say it is

second-order accurate if its error goes to zero at the same
rate as 1/n (so twice as fast).
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Theoretical properties ii

Transformation Invariant Accuracy

Standard normal No First order
Percentile Yes First order
Basic Bootstrap Yes First order
Student CI No Second order
BCa interval Yes Second order
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Theoretical properties iii

• The BCa interval is the only one of the five that is both
transformation invariant and second-order accurate.

• This comes with a steep computational price (we need a
second level of resampling)

• Recommendation: Use BCa, unless computation time is an
issue. In that case, use basic bootstrap.
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