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Lecture Objectives

• Understand the difference between resampling cases vs
residuals.

2



Motivation

• In the last two modules, we reviewed linear regression and
discussed residual analysis.

• We discussed the linear regression assumptions, and their
relative importance.

• In this module, we will discuss how to use bootstrap in the
context of linear regression.

• There are actually 2 different ways of using bootstrap,
corresponding to 2 different sets of assumptions concerning
the data generating mechanism.
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Bootstrap and Linear regression i

• When the error term is normally distributed, we know the
distribution of the estimator β̂ :

β̂ ∼ N
(
β, σ2(XTX)−1

)
.

• This can be used to compute p-values and confidence
intervals.

• But when we don’t know the distribution, or if we don’t want
to assume it follows a normal distribution, we can use
bootstrap to make valid inference.
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Bootstrap and Linear regression ii

• As we will see, there are two different ways to use bootstrap:
• Resample cases;
• Resample residuals.

• The main difference is how many assumptions we want to
retain:

• To resample residuals, we need to assume additivity, linearity,
and homoscedasticity.

• In both cases, we still need to assume independence of the
errors.
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Resampling cases

• This is the simplest form of bootstrap for linear regression.
• It should also be familiar.

• For this form of bootstrap to be valid, we only need to assume
the errors are independent.

• In fact, it can be shown that when resampling cases, the
bootstrap estimate of the standard error is approximately
equal to the Huber-White robust standard error.

Algorithm (Cases)

1. Sample with replacement from (Y1, X1), . . . , (Yn, Xn).
2. Refit the linear model using the bootstrap sample and obtain
bootstrap estimates β̂(b).
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First example i

library(DAAG)
# Recall
fit1 <- lm(magnetic ~ chemical, data = ironslag)

n <- nrow(ironslag)
boot_beta1 <- replicate(5000, {
indices <- sample(n, n, replace = TRUE)
fit_boot <- lm(magnetic ~ chemical,

data = ironslag[indices, ])
coef(fit_boot)

})

7



First example ii

str(boot_beta1)

## num [1:2, 1:5000] 7.1357 0.6105 -0.0984 1.0029
0.8562 ...
## - attr(*, ”dimnames”)=List of 2
## ..$ : chr [1:2] ”(Intercept)” ”chemical”
## ..$ : NULL
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First example iii

se_int <- sd(boot_beta1[1,])
se_slope <- sd(boot_beta1[2,])

cbind(”Lower” = coef(fit1) - 1.96*c(se_int, se_slope),
”Upper” = coef(fit1) + 1.96*c(se_int, se_slope))

## Lower Upper
## (Intercept) -3.2731976 6.078392
## chemical 0.6725151 1.159025
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First example iv

# Compare to MLE theory
confint(fit1)

## 2.5 % 97.5 %
## (Intercept) -3.7856893 6.590884
## chemical 0.6768355 1.154704

• Our confidence interval for the intercept is a bit smaller, but it
still includes 0.

• On the other hand, the confidence interval for chemical is
comparable to the one from MLE theory.
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Resampling residuals i

• As mentioned above, this approach requires more
assumptions than resampling cases:

• Additivity and linearity;
• Homoscedasticity.

• But the trade-off is that we get smaller confidence intervals
than if we resample cases.
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Resampling residuals ii

Algorithm (Residuals)

First, compute residuals Ei and fitted values Ŷi = β̂T Xi for each
observation i = 1, . . . , n.

1. Sample with replacement from the residuals and obtain a
bootstrap sample E

(b)
1 , . . . , E(b)

n .
2. Add the bootstrapped residuals to the fitted values:

Y
(b)

i = Ŷi + E
(b)
i .

3. Using these new outcomes Y
(b)

i and the original covariates
Xi, fit a linear regression model and obtain bootstrap
estimates β̂(b).
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Second example i

library(MASS)
# Recall
dataset <- transform(mammals,

log_body = log(body),
log_brain = log(brain))

# Fit model
fit2 <- lm(log_brain ~ log_body, data = dataset)
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Second example ii

# Compute residuals
resids <- resid(fit2)

n <- length(resids)
boot_beta2 <- replicate(5000, {
indices <- sample(n, n, replace = TRUE)
logbrain_boot <- fitted(fit2) + resids[indices]
fit_boot <- lm(logbrain_boot ~ log(mammals$body))
coef(fit_boot)

})
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Second example iii

str(boot_beta2)

## num [1:2, 1:5000] 2.128 0.778 2.051 0.733
1.992 ...
## - attr(*, ”dimnames”)=List of 2
## ..$ : chr [1:2] ”(Intercept)”
”log(mammals$body)”
## ..$ : NULL
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Second example iv

se_int <- sd(boot_beta2[1,])
se_slope <- sd(boot_beta2[2,])

cbind(”Lower” = coef(fit2) - 1.96*c(se_int, se_slope),
”Upper” = coef(fit2) + 1.96*c(se_int, se_slope))

## Lower Upper
## (Intercept) 1.9517078 2.3178695
## log_body 0.6964323 0.8069395
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Second example v

# Compare to MLE theory
confint(fit2)

## 2.5 % 97.5 %
## (Intercept) 1.9426733 2.3269041
## log_body 0.6947503 0.8086215

• This time, we can see that we get essentially the same result
in both cases.

• The bootstrap confidence intervals are slightly smaller.
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Second example vi

• Note: Other types of residuals can be used for the bootstrap,
e.g. to mitigate the effect of outliers.

• But don’t use standardized residuals! You want the residuals
to retain approximately the same variance as in the original
data.
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Final remarks i

• We looked at two different ways to perform bootstrap in the
context of linear regression.

• Resample the cases or the residuals.

• Resampling the cases is valid more generally than resampling
the residuals.

• But resampling the residuals can lead to smaller, more
accurate confidence intervals.

• Deciding which approach to use is a question of how much
you trust the model.
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Final remarks ii

• Importantly, neither approach is valid when the errors are
correlated.

• E.g. clustered data, repeated measurements, time series.
• Bootstrap can be adapted to these methods, but this is
beyond the scope of STAT 3150.
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