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Lecture Objectives

- Understand the difference between resampling cases vs
residuals.



- In the last two modules, we reviewed linear regression and

discussed residual analysis.
- We discussed the linear regression assumptions, and their
relative importance.

- In this module, we will discuss how to use bootstrap in the
context of linear regression.

- There are actually 2 different ways of using bootstrap,
corresponding to 2 different sets of assumptions concerning

the data generating mechanism.



Bootstrap and Linear regression i

- When the error term is normally distributed, we know the
distribution of the estimator [;’:

B~ N(B,0*(XTX)7).

- This can be used to compute p-values and confidence
intervals.
- But when we don’t know the distribution, or if we don’t want
to assume it follows a normal distribution, we can use
bootstrap to make valid inference.



Bootstrap and Linear regression ii

- As we will see, there are two different ways to use bootstrap:
- Resample cases;
- Resample residuals.
- The main difference is how many assumptions we want to
retain:

- To resample residuals, we need to assume additivity, linearity,
and homoscedasticity.

- In both cases, we still need to assume independence of the
errors.



Resampling cases

- This is the simplest form of bootstrap for linear regression.
- It should also be familiar.
- For this form of bootstrap to be valid, we only need to assume
the errors are independent.
- In fact, it can be shown that when resampling cases, the
bootstrap estimate of the standard error is approximately
equal to the Huber-White robust standard error.

Algorithm (Cases)
1. Sample with replacement from (Y1, X1), ..., (Y, X,).
2. Refit the linear model using the bootstrap sample and obtain
bootstrap estimates B(b).



First example i

library(DAAG)
# Recall
fitl <- lm(magnetic ~ chemical, ironslag)

n <- nrow(ironslag)
boot_betal <- replicate(5000, {
indices <- sample(n, n, TRUE)
fit_boot <- lm(magnetic ~ chemical,
ironslag[indices, 1)
coef(fit_boot)
b



First example ii

str(boot_betal)

## num [1:2, 1:5000] 7.1357 0.6105 -0.0984 1.0029
0.8562 ...

## - attr(x, "dimnames”)=List of 2

## ..$ : chr [1:2] "(Intercept)” "chemical”

## ..$ : NULL



First example iii

se_int <- sd(boot_betal[1,])
se_slope <- sd(boot_beta1[2,])

coef(fitl) - 1.96*c(se_int, se_slope),
coef(fitl) + 1.96*c(se_int, se_slope))

cbind(”Lower”

"Upper"

HHt Lower Upper
## (Intercept) -3.2731976 6.078392
## chemical 0.6725151 1.159025



First example iv

# Compare to MLE theory

confint(fit1)

it 2.5 % 97.5 %
## (Intercept) -3.7856893 6.590884
#t#t chemical 0.6768355 1.154704

- Our confidence interval for the intercept is a bit smaller, but it
still includes 0.

- On the other hand, the confidence interval for chemical is
comparable to the one from MLE theory.



Resampling residuals i

- As mentioned above, this approach requires more
assumptions than resampling cases:
- Additivity and linearity;
- Homoscedasticity.
- But the trade-off is that we get smaller confidence intervals
than if we resample cases.

"



Resampling residuals ii

Algorithm (Residuals)

First, compute residuals E; and fitted values ?; = BTXZ- for each

observationt=1,...,n.

1. Sample with replacement from the residuals and obtain a
bootstrap sample E\”, ..., E®.

2. Add the bootstrapped residuals to the fitted values:
v,® =¥ + B,

3. Using these new outcomes Yi(b)

and the original covariates
X, fit a linear regression model and obtain bootstrap
estimates 3®).



Second example i

library(MASS)
# Recall
dataset <- transform(mammals,
log(body),
log(brain))

# Fit model
fit2 <- 1lm(log_brain ~ log_body, dataset)



Second example ii

# Compute residuals
resids <- resid(fit2)

n <- length(resids)

boot_beta2 <- replicate(5000, {
indices <- sample(n, n, TRUE)
logbrain_boot <- fitted(fit2) + resids[indices]
fit_boot <- 1m(logbrain_boot ~ log(mammals$body))
coef(fit_boot)

)
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Second example iii

str(boot_beta2)

## num [1:2, 1:5000] 2.128 0.778 2.051 0.733
1.992

## - attr(*, "dimnames”)=List of 2

## ..$ : chr [1:2] "(Intercept)”
"log(mammals$body)”

## ..$ : NULL



Second example iv

se_int <- sd(boot_beta2[1,])
se_slope <- sd(boot_beta2[2,])

coef(fit2) - 1.96*c(se_int, se_slope),
coef(fit2) + 1.96*c(se_int, se_slope))

cbind(”Lower”

"Upper"

Hi Lower Upper
## (Intercept) 1.9517078 2.3178695
## log_body 0.6964323 0.8069395



Second example v

# Compare to MLE theory
confint(fit2)

Hit 2.5 % 97.5 %
## (Intercept) 1.9426733 2.3269041
## log_body  0.6947503 0.8086215

- This time, we can see that we get essentially the same result
in both cases.

- The bootstrap confidence intervals are slightly smaller.



Second example vi

- Note: Other types of residuals can be used for the bootstrap,
e.g. to mitigate the effect of outliers.
- But don't use standardized residuals! You want the residuals

to retain approximately the same variance as in the original
data.



Final remarks i

- We looked at two different ways to perform bootstrap in the

context of linear regression.
- Resample the cases or the residuals.

- Resampling the cases is valid more generally than resampling
the residuals.

- But resampling the residuals can lead to smaller, more
accurate confidence intervals.

- Deciding which approach to use is a question of how much
you trust the model.
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Final remarks ii

- Importantly, neither approach is valid when the errors are
correlated.
- E.g clustered data, repeated measurements, time series.
- Bootstrap can be adapted to these methods, but this is
beyond the scope of STAT 3150.
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