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Lecture Objectives

• Use bootstrap to estimate the bias and variance of an
estimator.

• Understand how the empirical CDF is related to resampling
techniques.
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Motivation

• As with jackknife, the main motivation is to study the
sampling distribution of an estimator.

• Jackknife can be used to estimate bias and standard error.
• But it doesn’t always work (e.g. sample median)

• Bootstrap is another resampling method that takes a more
direct approach to estimating the sampling distribution.
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Bootstrap estimate of the standard error i

• Let X1, . . . , Xn be a random sample from a distribution F .
• Suppose we use this sample to compute an estimate θ̂ of a
population parameter θ.

• Imagine a situation where we can generate B additional
samples of size n from the same distribution F .

• For each sample, we could compute an estimate θ̂(b), where
b = 1, . . . , B.

• We could then estimate the standard error of θ̂ by taking the
sample standard deviation of the additional estimates θ̂(b).

• Of course, we can’t really generate these additional samples…
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Bootstrap estimate of the standard error ii

• Bootstrap mimics this situation by sampling with replacement
from the original sample X1, . . . , Xn.

• Generate a sample X
(b)
1 , . . . , X

(b)
n of size n by sampling with

replacement from the original sample.
• Compute θ̂(b) using that bootstrap sample.

5



Example i

• Let’s look at the sample median with both jackknife and
bootstrap

# ”Population” is all integers between 1 and 100
population <- seq(1, 100)
median(population)

## [1] 50.5
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Example ii

# Generate B samples from sampling distribution
B <- 5000
n <- 10
results <- replicate(B, {

some_sample <- sample(population,
size = n)

median(some_sample)
})
sd(results) # Unbiased estimate

## [1] 13.04957
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Example iii

# Take a single sample from population
one_sample <- sample(population, size = n)
median(one_sample)

## [1] 28.5
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Example iv

# Jackknife----
theta_hat <- median(one_sample)
theta_i <- numeric(n)
for (i in 1:n) {

theta_i[i] <- median(one_sample[-i])
}
# Too small...
sqrt((n-1)*mean((theta_i - mean(theta_i))^2))

## [1] 1.5
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Example v

# Bootstrap----
# How do we sample with replacement?
sample(n, n, replace = TRUE)

## [1] 4 10 1 8 4 4 4 7 8 2
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Example vi

# Bootstrap estimate of SE
boot_theta <- replicate(5000, {
# Sample with replacement
indices <- sample(n, n, replace = TRUE)
median(one_sample[indices])

})
# Closer to true value
sd(boot_theta)

## [1] 8.14544
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Example i

• We will revisit the law dataset in the bootstrap package,
which contains information on average LSAT and GPA scores
for 15 law schools.

• We are interested in the correlation ρ between these two
variables

library(bootstrap)
# Estimate of rho
(rho_hat <- cor(law$LSAT, law$GPA))

## [1] 0.7763745
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Example ii

# Bootstrap estimate of SE
n <- nrow(law)
boot_rho <- replicate(5000, {
# Sample with replacement
indices <- sample(n, n, replace = TRUE)
# We're sampling pairs of observations
# to keep correlation structure
cor(law$LSAT[indices], law$GPA[indices])

})

sd(boot_rho)
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Example iii

## [1] 0.1360481
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Empirical CDF i

• The empirical CDF of a sample X1, . . . , Xn, denoted F̂n, is
the CDF of a discrete distribution whose support is the data
points {X1, . . . , Xn}, and where each point has mass 1/n.

• Mathematically, we have

F̂n(x) = 1
n

n∑
i=1

I(Xi ≤ x).

• Why do we care? We already argued that we can’t easily
generate more samples from F . Instead, bootstrap generates
more samples from the distribution F̂n.

• Sampling with replacement is the same as sampling from the
empirical CDF!
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Empirical CDF ii

• Since F̂n → F , we can often translate this convergence in
terms of the bootstrap estimates.

Real world: F ⇒ X1, . . . , Xn ⇒ θ̂ = g(X1, . . . , Xn)
Bootstrap world: F̂n ⇒ X

(b)
1 , . . . , X(b)

n ⇒ θ̂(b) = g(X(b)
1 , . . . , X(b)

n )
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Bootstrap estimate of bias

• Just as with jackknife, we can use bootstrap to estimate the
bias of θ̂.

• Let θ̂(b) be the estimates computed using the bootstrap
samples, and let θ̄ = n−1 ∑B

b=1 θ̂(b) be their sample mean.
• The bootstrap estimate of bias is given by

b̂ias(θ̂) = θ̄ − θ̂.
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Example i

# law dataset
rho_hat <- cor(law$LSAT, law$GPA)

# Bootstrap estimate of bias
B <- 5000
n <- nrow(law)

18



Example ii

boot_rho <- replicate(5000, {
# Sample with replacement
indices <- sample(n, n, replace = TRUE)
# We're sampling pairs of observations
# to keep correlation structure
cor(law$LSAT[indices], law$GPA[indices])

})

(bias <- mean(boot_rho) - rho_hat)

## [1] -0.004382551
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Example iii

# Debiased estimate
rho_hat - bias

## [1] 0.780757
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Final remarks

• So when should we use jackknife vs bootstrap?
• In some way, the jackknife is an approximation of the
bootstrap, and as a consequence, the bootstrap almost
always outperforms the jackknife.

• However, for small sample sizes, the jackknife will be more
computationally efficient:

• Jackknife requires n + 1 computations of the estimate.
• Bootstrap requires B + 1 computations of the estimate,
where B is usually at least 1000.

• Bootstrap performs better when the sampling distribution is
skewed (see next lecture).

• Jackknife does not work with some estimators, e.g. sample
median and sample quantiles.

21


