
Generating Random Variates

Max Turgeon

STAT 3150–Statistical Computing

Lecture Objectives

• Recognize when to use the inverse-transform method.
• Be able to generate random variates through transformations.
• Derive bounding densities for accept-reject sampling.

2

Motivation

• A staple of modern statistical research is the simulation study.
• Finite sample properties can then be compared to theoretical
expectations.

• More generally, by simulating data we can study the
properties of a method or a model.

• Bayesian statistics strongly relies on generating data to
estimate the posterior density of the parameters (cf. STAT
4150).

3

Inverse-Transform Method i

• Recall: Let X be a random variable with CDF F (x). The
quantile function is defined as

F −1(p) = inf{x ∈ R | F (x) ≥ p}.

• If X is continuous, this is simply the inverse function.

4

Inverse-Transform Method ii

Theorem
If U is uniform on [0, 1], then F −1(U) has the same distribution as
X .

• In R, we can sample random variates from U(0, 1) by using
the function runif:

runif(5)

[1] 0.2681359 0.3308333 0.4411671 0.8352923
0.9690489

5

Inverse-Transform Method iii

Algorithm
To generate random variates from F :

1. Generate random variates from U(0, 1).
2. Compute the quantile function F −1.
3. Plug-in the uniform variates into F −1.

6

Example i

• Let X follow an exponential distribution with parameter λ:

F (x) = 1 − exp(−λx).

• Since X is continuous, the quantile function is the inverse of
F :

p = 1 − exp(−λx) ⇒ exp(−λx) = 1 − p

⇒ −λx = log(1 − p)

⇒ x = − log(1 − p)
λ

.

7

Example ii

lambda <- 1
We want 1000 samples
n <- 1000
unif_vars <- runif(n)
exp_vars <- -log(1 - unif_vars)/lambda

8

Example iii

Compute theoretical quantiles
using qexp
exp_theo <- qexp(ppoints(n))
qqplot(exp_theo, exp_vars)
Add diagonal line
abline(a = 0, b = 1)

9

Example iv

0 2 4 6

0
2

4
6

8

exp_theo

ex
p_

va
rs

10

Example v

Note: If U is uniform on [0, 1], so is 1 − U .

• Therefore − log(U)
λ

also follows an Exp(λ) distribution.

11

Exercise

Compute the quantile function for the Cauchy distribution
Cauchy(θ, γ) with CDF

F (x) = 1
π

arctan
(

x − θ

γ

)
+ 1

2
.

Use the inverse transform to generate 5 random variates from
Cauchy(0, 1).

12

Solution i

p = 1
π

arctan
(

x − θ

γ

)
+ 1

2
⇒ π(p − 0.5) = arctan

(
x − θ

γ

)

⇒ tan (π(p − 0.5)) = x − θ

γ

⇒ γ tan (π(p − 0.5)) = x − θ

⇒ x = γ tan (π(p − 0.5)) + θ.

Note: We always have π(p − 0.5) ∈
(
−π

2 , π
2

)
for p ∈ (0, 1).

13

Solution ii

invcdf_cauchy <- function(p, theta = 0,
gamma = 1) {

gamma*tan(pi*(p - 0.5)) + theta
}
unif_vars <- runif(5)
invcdf_cauchy(unif_vars)

[1] -0.8263884 0.9488969 2.6537989 1.3050843
1.2012162

14

Inverse Transform—Discrete Edition

Figure 1: From Wikipedia
15

Example i

• Let X follow a Bernoulli distribution with parameter p:

F (x) =


0 x < 0,

1 − p x ∈ [0, 1),
1 x ≥ 1.

16

Example ii

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

p = 0.6

x

F
(x

)

0 1

17

Example iii

• As we can see, we have

F −1(u) =

0 u ≤ 1 − p,

1 u > 1 − p.

• In other words, we sample U . If it is less than 1 − p, we set
X = 0; else, we set X = 1.

18

Example iv

p <- 0.6
n <- 1000
unif_vars <- runif(n)
as.numeric turns FALSE into 0
and TRUE into 1
bern_vars <- as.numeric(unif_vars > 1 - p)

c(mean(bern_vars), var(bern_vars))

[1] 0.6410000 0.2303493

19

Example v

Compare with theory
c(p, p*(1 - p))

[1] 0.60 0.24

20

More General Transformations

• Inverse transform is just one type of transformation!
• We can use relationships between distributions to generate
random variates. For example:

• If Z ∼ N(0, 1), then Z2 ∼ χ2(1).
• If V1, . . . , Vp ∼ χ2(1), then

∑p
i=1 Vi ∼ χ2(p).

• If U ∼ χ2(p) and V ∼ χ2(q), then

U/p

V/q
∼ F (p, q).

21

Example i

Choose degrees of freedom
p <- 2
q <- 4

rnorm samples from a normal distribution
U <- sum(rnorm(p)^2)
V <- sum(rnorm(q)^2)

Take ratio
(U/p)/(V/q)

22

Example ii

[1] 1.575616

What if we want 1000 replicates?
Use the function replicate!
First argument: number of replicates
Second argument: expression to be run multiple times
f_vars <- replicate(1000, {

U <- sum(rnorm(p)^2)
V <- sum(rnorm(q)^2)
(U/p)/(V/q)

})

23

Example iii

qqplot(f_vars, qf(ppoints(1000), p, q))
Add diagonal line
abline(a = 0, b = 1)

24

Example iv

0 10 20 30 40 50

0
20

40
60

80

f_vars

qf
(p

po
in

ts
(1

00
0)

, p
, q

)

25

Acceptance-Reject Method i

• Suppose you want to sample from a distribution X with
density f , but you can only sample from a different
distribution Y with density g.

• Further suppose that there exists a constant c > 1 such that

f(t)
g(t)

≤ c

for all t such that f(t) > 0.
• The Acceptance-Reject method is a way to transform random
variates of Y into random variates of X .

26

Acceptance-Reject Method ii

Algorithm

1. Sample y from Y .
2. Sample a uniform variate u from U(0, 1).
3. Compute the ratio r := f(y)

cg(y) . If u < r, set x = y. Otherwise,
reject y and repeat from Step 1.

Note: The number of iterations before we accept a draw from Y

follows a geometric distribution with mean c. So we want the
constant c to be as small as possible.

(If you want a proof of why this works, see UM Learn.)

27

Example i

• We want to sample from X ∼ Beta(2, 2) whose density is
f(x) = 6x(1 − x).

• The proposal distribution will be Y ∼ Beta(1, 1) (i.e. a
uniform distribution).

• Let t ∈ (0, 1). We have

f(t)
g(t)

= 6t(1 − t)
1

≤ 6,

since the maximum t and 1 − t can take is 1. So we can set
c = 6.

28

Example ii

0.0 0.2 0.4 0.6 0.8 1.0

0
1

2
3

4
5

6

x

D
en

si
ty

Accept

Reject

29

Example iii

Set parameters----
C <- 6 # Constant
n <- 1000 # Number of variates
k <- 0 # counter for accepted
j <- 0 # iterations
y <- numeric(n) # Allocate memory

30

Example iv

A while loop runs until condition no longer holds
while (k < n) {
u <- runif(1)
j <- j + 1
x <- runif(1) # random variate from g
if (u < 6*x*(1-x)/C) {

k <- k + 1
y[k] <- x
}

}

31

Example v

How many iterations did we need?
j

[1] 6271

Compare theoretical and empirical quantiles
p <- seq(0.1, 0.9, by = 0.1)
Qhat <- quantile(y, p) # empirical
Q <- qbeta(p, 2, 2) # theoretical

32

Example vi

round(cbind(Qhat, Q, diff = abs(Qhat - Q)), 3)

Qhat Q diff
10% 0.201 0.196 0.005
20% 0.283 0.287 0.004
30% 0.356 0.363 0.007
40% 0.428 0.433 0.005
50% 0.491 0.500 0.009
60% 0.564 0.567 0.004
70% 0.640 0.637 0.004
80% 0.718 0.713 0.005
90% 0.805 0.804 0.001

33

Example vii

• As the graph showed, the “Rejection” region is very large.

• In fact, it is unnecessarily large.

• With a little bit of calculus, we can show that the maximum
value of 6x(1 − x) is 1.5.

• In other words, we can set the constant c = 1.5.
• This means that we can sample from X while rejecting 4
times less often.

34

Example viii

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

x

D
en

si
ty

Accept

Reject

35

Example ix

C <- 1.5; k <- j <- 0 # Reset counters
while (k < n) {
u <- runif(1)
j <- j + 1
x <- runif(1)
if (u < 6*x*(1-x)/C) {

k <- k + 1
y[k] <- x
}

}

36

Example x

How many iterations did we need this time?
j

[1] 1491

37

Summary

• When we can compute the quantile function, the inverse
transform is simple to implement.

• But it can be hard to compute!

• We can leverage relationships between distributions to
transform one random variate into another.

• Accept-reject can be used when we have a bounding density.

38

