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Lecture Objectives

• Estimate integrals using importance sampling.
• Learn strategies for choosing an appropriate importance
function.

• Understand how importance sampling is a form of variance
reduction.
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Motivation

• In the last module, we talked about Monte Carlo integration,
and how we could estimate integrals by rewriting them as an
expectation.

• It gave us a powerful method where we sample from a
distribution X and transform through a function g to
estimate E(g(X)).

• Importance sampling is a different way to tackle the same
problem, by re-weighting samples from one distribution so
that it matches a different distribution.

• Why? Because it gives us another way to reduce the variance
of our estimate.
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Importance sampling i

• The setup is the same as earlier: suppose we want to estimate
an integral of the form

θ =
∫

A
g(x)f(x)dx,

where f(x) is a density supported on A.
• If we have a function ϕ(x) that is positive on A, i.e. ϕ(x) > 0
for all x ∈ A, we can also write

θ =
∫

A
g(x)f(x)

ϕ(x)
ϕ(x)dx.
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Importance sampling ii

• Why? If ϕ is a density, we have just found a relationship
between two expectations:

Ef (g(X)) = Eϕ

(
g(X)f(X)

ϕ(X)

)
.

• The goal would then be to choose a density ϕ such that:
• It is (relatively) easy to sample from ϕ.
• We can minimize the variance of Y = g(X)f(X)

ϕ(X) .
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Example i

• We will look at the following integral:∫ 1

0

e−x

1 + x2 dx.

• One way to write this integral as an expectation is by using a
uniform on (0, 1):

∫ 1

0

e−x

1 + x2 dx = E

(
e−X

1 + X2

)
, X ∼ U(0, 1).

• We will look at ϕ(x) = e−x, i.e. the exponential density.
• But note that the density is supported on a larger set than

(0, 1).
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Example ii

# Sample size
n <- 5000
# Define a function for integrand
integrand <- function(x) {
# We want to multiply by zero if outside the range
supp_ind <- as.numeric(x > 0 & x < 1)
return(supp_ind * exp(-x)/(1 + x^2))

}
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Example iii

# Look at the graph of the function
xvar <- seq(-0.5, 1.5, by = 0.01)
plot(xvar, integrand(xvar), type = ”l”)
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Example iv
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Example v

# 1. Basic MC integration
unif_vars <- runif(n)

theta1 <- mean(integrand(unif_vars))
sd1 <- sd(integrand(unif_vars))

# 2. Exponential density
exp_vars <- -log(unif_vars)

theta2 <- mean(integrand(exp_vars)/dexp(exp_vars))
sd2 <- sd(integrand(exp_vars)/dexp(exp_vars))
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Example vi

# Compare results
c(theta1, theta2)

## [1] 0.5289111 0.5187084

c(sd1, sd2)/sqrt(n)

## [1] 0.003445435 0.005892648

• So the importance sampling algorithm seems to work, but the
standard error is about the same as basic Monte Carlo
integration. Can we do better?
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Example vii

• Key observation: because some exponential samples fall
outside the interval (0, 1), they don’t actually contribute to
the estimate…

# How many are zeros?
sum(integrand(exp_vars) == 0)

## [1] 1853

• Therefore, we should probably restrict the domain of the
exponential to (0, 1).

• Check:
∫ 1

0 e−xdx = 1 − e−1.
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Example viii

• We will use the following density:

ϕ2(x) = e−x

1 − e−1 .

• How can we generate from this density? Inverse-transform!
• First, note that for x ∈ (0, 1):

F (x) =
∫ x

0

e−y

1 − e−1 dy

= 1 − e−x

1 − e−1 .
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Example ix

• We can then get the quantile function through inversion:

p = 1 − e−x

1 − e−1 ⇔ p(1 − e−1) = 1 − e−x

⇔ e−x = 1 − p(1 − e−1)

⇔ x = − log
(
1 − p(1 − e−1)

)
.
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Example x

# 3. Truncated exponential density
unif_vars <- runif(n)
truncexp_vars <- -log(1 - unif_vars*(1 - exp(-1)))

# Evaluate the density at those points
phi_vars <- exp(-truncexp_vars)/(1 - exp(-1))

theta3 <- mean(integrand(truncexp_vars)/phi_vars)
sd3 <- sd(integrand(truncexp_vars)/phi_vars)
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Example xi

# Compare results
c(theta1, theta2, theta3)

## [1] 0.5289111 0.5187084 0.5265824

c(sd1, sd2, sd3)/sqrt(n)

## [1] 0.003445435 0.005892648 0.001355448
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Exercise

Suppose that f(x) is the density of a standard normal distribution,
and that g(x) = exp

(
−1

2(x − 2)2
)
. Use important sampling to

estimate Ef (g(X)) using:

1. ϕ(x) is the density of a standard normal;
2. ϕ(x) is the density of N(2, 1).
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Solution i

• First, we sample from N(0, 1), i.e. normal MC integration.

n <- 3150
integrand <- function(x) exp(-0.5*(x - 2)^2)
norm_vars <- rnorm(n)
theta1 <- mean(integrand(norm_vars))
std_er1 <- sd(integrand(norm_vars))/sqrt(n)

c(theta1, std_er1)

## [1] 0.254829449 0.005124054
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Solution ii

• Next we sample from N(2, 1). We can simply shift our
previous sample.

norm_vars2 <- norm_vars + 2
phi_vars <- dnorm(norm_vars2, mean = 2)
num_vars <- integrand(norm_vars2)*dnorm(norm_vars2)

theta2 <- mean(num_vars/phi_vars)
std_er2 <- sd(num_vars/phi_vars)/sqrt(n)

c(theta2, std_er2)
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Solution iii

## [1] 0.258526360 0.005075798
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Variance comparison i

• In the example above, we looked at three different
approaches:

• E
(

e−X

1+X2

)
, where X ∼ U(0, 1);

• Sampling from Exp(1) and throwing away samples that fall
outside (0, 1);

• Sampling from an Exp(1) truncated to the interval (0, 1).

• It’s easy to see why the first and third approach were better
than the second:

• They used all the samples.

• But why was the third approach better than the first?
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Variance comparison ii

Theorem
The best density ϕ, i.e. the one that minimizes variance, is given by

ϕ∗(x) = |g(x)|f(x)∫
A|g(t)|f(t)dt

.

• Of course, we typically can’t compute the denominator,
otherwise we wouldn’t need to estimate it!

• But the general idea is we want ϕ to look like |g(x)|f(x).
• In our example above, ϕ = e−x

1−e−1 looks more like |g(x)|f(x)
than ϕ(x) = 1.
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Visualization i

• We can check by plotting the ratio |g(x)|f(x)
ϕ(x) .

• We want it to be almost constant, i.e. close to horizontal.

# Points between 0 and 1 without boundary
xvar <- ppoints(100)
plot(xvar, integrand(xvar), type = ”l”)
lines(xvar, integrand(xvar)/exp(-xvar), col = ”red”)
legend(x = ”topright”,

legend = c(”Uniform”, ”Trunc. Exp.”),
col = c(”black”, ”red”), lty = 1)
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Visualization ii
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Example i

• Suppose we want to estimate a tail probability of a standard
normal variable X ∼ N(0, 1). Specifically, we want to
estimate P (X > 5).

• We will explore a few different ways of estimating this
quantity, trying to find the most efficient estimate.

• First, we can use the “hit-or-miss” approach, i.e. sample from
a standard normal and count the proportion of samples that
are greater than 5.
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Example ii

n <- 5000
norm_vars <- rnorm(n)
# Average of 0s and 1s gives proportion of 1s
mean(norm_vars > 5)

## [1] 0

• This tail probability is so small that we didn’t generate any
value greater than 5… let’s increase the sample size.
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Example iii

n <- 10000000
norm_vars <- rnorm(n)
# Average of 0s and 1s gives proportion of 1s
mean(norm_vars > 5)

## [1] 3e-07

• So we had 3 out of 10 million samples! But we can use the
symmetry of the standard normal to do slightly better.
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Example iv

# Check if > 5 in absolute value, and divide by 2
0.5*mean(abs(norm_vars) > 5)

## [1] 3e-07

# Compare both standard errors
c(sd(norm_vars > 5), 0.5*sd(abs(norm_vars) > 5))

## [1] 0.0005477225 0.0003872982

• Let’s see if we can do better using importance sampling.
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Example v

• The main problem with our approach above is that most
samples don’t count towards tail probabilities.

• Solution: Sample from a distribution where every sample will
count towards the tail probabilities.

• E.g. a shifted exponential, with support (5, ∞).

• Exercise: the density is given by ϕ(x) = exp(−x + 5)
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Example vi

# Shifted exponential variates
shiftexp_vars <- rexp(n) + 5

# Evaluate the density at those points
phi_vars <- exp(-(shiftexp_vars - 5))

theta_est <- mean(dnorm(shiftexp_vars)/phi_vars)
sd_est <- sd(dnorm(shiftexp_vars)/phi_vars)
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Example vii

# Compare all three approaches
c(”Method1” = mean(norm_vars > 5),
”Method2” = 0.5*mean(abs(norm_vars) > 5),
”Method 3” = theta_est)

## Method1 Method2 Method 3
## 3.000000e-07 3.000000e-07 2.865417e-07

c(”Method1” = sd(norm_vars > 5),
”Method2” = 0.5*sd(abs(norm_vars) > 5),
”Method 3” = sd_est)
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Example viii

## Method1 Method2 Method 3
## 5.477225e-04 3.872982e-04 3.970848e-07

• This corresponds to a variance reduction of 975 times!
• In other words, with Method 3, we can achieve the same
precision as Method 2 by using 31 times less samples.
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Where to go from here?

• As you can probably see, the hardest part is finding the right
density ϕ.

• There’s been a lot of research on better strategies.
• Adaptive IS: Start with trial density ϕ, and update as you get
more information about g(x)f(x).

• Sequential IS: For high-dimensional problems, build from
conditional densities sequentially.

• Annealed IS: Construct the density ϕ using Markov chains.

• There’s also been a lot of research on how to adapt
importance sampling to more complex distributions.
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Some applications

• Bouchard-Côté et al (2012) generalized sequential IS so that
they could use it to make probability statements about
phylogenetic trees.

• Need distribution on phylogenetic trees

• Glynn & Iglehart (1989) discuss how importance sampling can
be used to study queuing theory and estimate average waiting
times (for example).

• Queuing theory relies on stochastic processes

• Lyman & Zuckerman (2007) use annealed IS to estimate the
average equilibrium state of peptides as they cool down.

• Need distribution on cooling paths
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