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Lecture Objective

• Use jackknife to estimate the bias and standard error of an
estimator.
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Motivation i

• In the previous module, we saw how we can could perform
estimation and hypothesis testing using simulations.

• Main idea: Simulate data from a fixed distribution, compute
estimate/test statistic, and repeat the simulation to
approximate the sampling distribution.

• This approach can be very powerful when studying the
behaviour of estimators, or when comparing multiple testing
strategies.

• However, there is a big obstacle in applying these methods for
data analysis:

• They all assume we know the data generating mechanism.
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Motivation ii

• How can we apply these same principles for data analysis?

• Resampling methods

• We will study resampling methods for the next three modules,
and we will see how they can be used for data analysis.
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Jackknife i

• The jackknife is a method that was first introduced to
estimate the bias of an estimator.

• We start with a sample X1, . . . , Xn. From that sample, we
compute an estimate θ̂ of a parameter θ.

• We are interested in estimating E(θ̂) − θ.

• For each i, we can also create another sample by omitting the
i-th observation:

X1, . . . , Xi−1, Xi+1, . . . , Xn.

• For each of these sample, we can also compute an estimate
θ̂(i) of θ.
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Jackknife ii

• E.g compute the sample mean or variance while omitting the
i-th observation

• In other words, we now have n + 1 estimates of θ!
• The jackknife estimate of the bias E(θ̂) − θ is given by

b̂iasjack = (n − 1)
(

1
n

n∑
i=1

θ̂(i) − θ̂

)
.
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Example i

• Consider the following two estimate of the variance:

σ̂2
1 = 1

n

n∑
i=1

(
Xi − X̄

)2
, σ̂2

2 = 1
n − 1

n∑
i=1

(
Xi − X̄

)2
.

• The only difference is the constant in front of the sum, which
implies that σ̂2

2 is the unbiased estimate.
• Let’s compute the jackknife bias estimate of σ̂2

1 .
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Example ii

# Generate a random sample
n <- 20
xvars <- rgamma(n, shape = 3, rate = 5.5)

# Compute the estimate
theta_hat <- mean((xvars - mean(xvars))^2)
c(”estimate” = theta_hat,
”theoretical” = 3/5.5^2)

## estimate theoretical
## 0.06026442 0.09917355
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Example iii

# Jackknife
theta_i_hat <- numeric(n)

for (i in 1:n) {
xvars_jack <- xvars[-i]
mean_i <- mean(xvars_jack)
theta_i_hat[i] <- mean((xvars_jack - mean_i)^2)

}
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Example iv

# Estimate of bias
(bias <- (n-1)*(mean(theta_i_hat) - theta_hat))

## [1] -0.003171811

c(”De-biased” = theta_hat - bias,
”Unbiased” = var(xvars))

## De-biased Unbiased
## 0.06343623 0.06343623
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Example i

• Consider the patch dataset in the bootstrap package. It
contains measurements of a certain hormone on the
bloodstream of 8 individuals, after wearing a patch.

• For each individual, we have three measurements: placebo,
oldpatch, and newpatch.

• The parameter of interest is a ratio of differences:

θ = E(newpatch) − E(oldpatch)
E(oldpatch) − E(placebo)

.
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Example ii

library(bootstrap)
str(patch)

## 'data.frame': 8 obs. of 6 variables:
## $ subject : int 1 2 3 4 5 6 7 8
## $ placebo : num 9243 9671 11792 13357 9055 ...
## $ oldpatch: num 17649 12013 19979 21816 13850 ...
## $ newpatch: num 16449 14614 17274 23798 12560 ...
## $ z : num 8406 2342 8187 8459 4795 ...
## $ y : num -1200 2601 -2705 1982 -1290 ...
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Example iii

• y is newpatch - oldpatch, and z is oldpatch -
placebo.

• Recall that E(X/Y ) ̸= E(X)/E(Y ). So even if we have an
unbiased estimate of both the numerator and the
denominator of θ, their ratio will generally be biased.

# Estimate of theta
theta_hat <- mean(patch$y)/mean(patch$z)

13



Example iv

# Jackknife
n <- nrow(patch)
theta_i <- numeric(n)

for (i in 1:n) {
theta_i[i] <- mean(patch[-i,”y”])/mean(patch[-i,”z”])

}
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Example v

# Estimate of bias
(bias <- (n-1)*(mean(theta_i) - theta_hat))

## [1] 0.008002488

c(”Biased” = theta_hat,
”De-biased” = theta_hat - bias)

## Biased De-biased
## -0.07130610 -0.07930858
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Example vi

• The bias is significant: it represents 11% of the estimate.

But be careful:

# NOT THE SAME THING
mean(patch$y/patch$z)

## [1] 0.0379914
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Estimate of the standard error

• The jackknife can also be used to estimate the standard error
of an estimate:

ŝejack =

√√√√(n − 1
n

) n∑
i=1

(
θ̂(i) − 1

n

n∑
i=1

θ̂(i)

)2

.
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Example (cont’d)

# Continuing on with the patch dataset
(se <- sqrt((n-1)*mean((theta_i - mean(theta_i))^2)))

## [1] 0.1055278

# 95% CI
c(”LB” = theta_hat - bias - 1.96*se,
”UB” = theta_hat - bias + 1.96*se)

## LB UB
## -0.2861430 0.1275259
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Example i

• We will consider the law dataset in the bootstrap package.
• It contains information on average LSAT and GPA scores for
15 law schools.

• We are interested in the correlation ρ between these two
variables

library(bootstrap)
str(law)
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Example ii

## 'data.frame': 15 obs. of 2 variables:
## $ LSAT: num 576 635 558 578 666 580 555 661
651 605 ...
## $ GPA : num 3.39 3.3 2.81 3.03 3.44 3.07 3
3.43 3.36 3.13 ...

# Estimate of rho
(rho_hat <- cor(law$LSAT, law$GPA))

## [1] 0.7763745
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Example iii

# Jackknife
n <- nrow(law)
rho_i <- numeric(n)

for (i in 1:n) {
rho_i[i] <- cor(law$LSAT[-i], law$GPA[-i])

}
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Example iv

# Estimate of bias
(bias <- (n-1)*(mean(rho_i) - rho_hat))

## [1] -0.006473623

c(”Biased” = rho_hat,
”De-biased” = rho_hat - bias)

## Biased De-biased
## 0.7763745 0.7828481
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Example v

(se <- sqrt((n-1)*mean((rho_i - mean(rho_i))^2)))

## [1] 0.1425186

# 95% CI
c(”LB” = rho_hat - bias - 1.96*se,
”UB” = rho_hat - bias + 1.96*se)

## LB UB
## 0.5035116 1.0621846
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Final remarks i

• The jackknife is a simple resampling technique to estimate
bias and standard error.

• The idea is to remove one observation at a time and
recompute the estimate, so that we get a sample from the
sampling distribution.

• The theoretical details behind the jackknife are beyond the
scope for this course. But two important observations:

• The “debiased” estimate is generally only asymptotically
unbiased. But its bias goes to 0 “more quickly” than the bias
of the original estimator.

• The jackknife only works well for “smooth plug-in estimators”.
In particular, the jackknife does not work well with the median.
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Final remarks ii

• The jackknife was generalized in two important ways:

• Bootstrap: This will be the topic of the next lecture.
• Cross-validation: This is a method for estimating the
prediction error (see STAT 4250).
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