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Lecture Objectives

- Given a distribution for the data, write down the likelihood
function and maximize it.
- Understand likelihood function for binned data.



- Maximum Likelihood Estimation is a general strategy for
finding “good” estimators that was first proposed by R.A.
Fisher.

- | will give the general definition, but a more thorough
discussion is beyond the scope of today’s lecture.

- Notation:

- X1,..., X, isarandom sample.

- X =(Xq,..., X,).

- B is a (population) parameter of interest.

- Sy is the parameter space, i.e. the set of possible values for 6.
- f(x;0) will denote the density function (or PMF) of the data.



The likelihood function L(6 | X) is the joint distribution of the
observations considered as a function of 6:

Lo | X) = Hsz,Q

Avalue @ that maximizes L(6 | X), in other words
L | X) = max (0 | X),

is a Maximum Likelihood Estimate of 0.



- In general, the MLE may not be unique. We need to make
some assumptions (called identifiability assumptions) to
ensure uniqueness.

- Since log is a monotone increasing function, maximizing
L(6 | X) is equivalent to maximizing

00| X) =log L(6 | X).

- Why would this be helpful?



- Suppose X1, ..., X, isarandom sample from a normal
distribution N (u, 02).
- 500 = (u,0?).

- We have
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- By taking the log, we get the log-likelihood:
1 n
0| X)=—= log(27m 2— Z

- We need to maximize this expression.

- Take derivative.
- Numerical methods?



Exercise 1

- Suppose we have a random sample Xy, ..., X, from an
exponential Ezp()\), where

f(z; A) = dexp(—=Az), x> 0.

- Write down the log-likelihood and find its derivative.
- Use numerical methods to find the MLE using the aircondit
dataset in the boot package.



Solution 1 i

- The likelihood is given by
LA | X) = H)\exp " exp( )\ZX .
- The log-likelihood is therefore

(A | X) =nlogh —A>_ X,

i=1

- The derivative with respect to A is
Lir1x) =2 -3 x,
d\ >\ "

i=1



Solution 1 ii

library(boot)

log_lik_der <- function(lambda) {
n <- nrow(aircondit)

n/lambda - sum(aircondit$hours)

# We will look for a solution on [0.001, 1]
# We found the bounds by trial and error
uniroot(log_lik_der,

c(0.001, 1))



Solution 1 iii

## $root

## [1] 0.009250825
i

## $f.root

## [1] 0.1816193
i

## $iter

## [1] 11

#H

## $init.it

## [1] NA

#H

"



Solution 1 iv

## $estim.prec
## [1] 0.0001107722

# Check whether we get the same value

# as analytical solution
1/mean(aircondit$hours)

## [1] 0.00925212



Exercise 2

- This is an example of grouped or binned data:

Interval Count

2
3
1
2
1
1

- If the data follows Exp()), what is the probability that X;
falls in a given bin?



Solution 2 i

- The probability an observation Xj falls in the interval [a, b)
can be computed using the CDF:

P(X; € [a,b)) = F(b) — F(a) = exp(—Aa) — exp(—Ab).

- If our data is in k bin [a;, b;), and n; is the number of
elements in bin g, then our likelihood function is

LOV | X) = [T (exp(—Aay) — exp(—Ab;))"™

j=1
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Solution 2 ii

- The log-likelihood is

k
(N ] X) Zn] log (exp(—Aa;) — exp(—Ab;)) .

- The derivative with respect to A is

d (] X) = Zk: n; (=a; exp(=Aa;) + b; exp(—=Ab;))
d\ = exp(—Aa;) — exp(—Ab;)




Solution 2 iii

Create three vectors:

#

# 1. Lower bounds of bins

# 2. Upper bounds of bins

# 3. Number of values in bins
a_vec <- c(o, 2, 3, 4, 5, 6)
b_vec <- ¢(2, 3, 4, 5, 6, Inf)

n_vec <- c(2, 3, 1, 2, 1, 1)



Solution 2 iv

log_lik_der_binned <- function(lambda) {

num <- n_vec*(-a_vecxexp(-lambda*a_vec) +
b_vec*exp(-lambda*b_vec))

# Need to fix last value manually

# to avoid NaN value

num[6] <- -n_vec[6]*a_vec[6]+exp(-lambda*a_vec[6])

denom <- exp(-lambda*a_vec) - exp(-lambdax*b_vec)

sum(num/denom)



Solution 2 v

# We will look for a solution on [0.1, 1]
uniroot(log_lik_der_binned,
c(o0.1, 1))

## $root

## [1] 0.271396

#H

## $f.root

## [1] 3.952816e-05
i

## $iter



Solution 2 vi

#it [1] 7

#H

## $init.it

##t [11 NA

i

## $estim.prec

## [1] 6.103516e-05

19



