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Lecture Objectives

- Recall the definition of a statistic and its sampling distribution

- Explain how simulations can be used for estimation and
hypothesis testing

- Design and conduct a simulation study



- Over the last few weeks, we talked about generating random
variables and used them to estimate integrals.
- Starting this week, we will investigate how these ideas can be
used for data analysis.
- How to use simulations to estimate population parameters.
- How to use simulations to perform hypothesis testing.



First, recall the following definitions:

- A statistic is a function of a sample, i.e. from a sample
Xi,...,X, compute an output.
- Sample mean, sample variance, etc.
- Histogram, empirical CDF
. An estimator is a statistic § is a statistic used to estimate (or
“approximate”) a population parameter 6.

- The sample mean estimates the population mean
- The empirical CDF approximates the population CDF.



- A statistic is a random variable, because it is a function of the
sample. Therefore it has a distribution: the sampling
distribution.

- If X1,..., X, are N(u,c?), then the sampling distribution
for the sample mean is N (i1, 02 /n)



- The sampling distribution is often a function of unknown
population parameters.

- Or even the type of distribution may be unknown.

- Monte Carlo methods can be used to estimate the sampling
distribution and derive quantities of interest.

- E.g. Mean Squared Error, percentiles.



Example: 538’s The Riddler i

- Refer to this post:
https://fivethirtyeight.com/features/can-you-
parallel-park-your-car/

- The population parameter we want to estimate is
P(Have to parallel park).

- A sample is an arrangement of four cars in six parking spots,
with each arrangement equally likely.

- From a sample, we can determine if the Riddler will have to
parallel park or not.

- Our statistic T" is binary: Yes or No.


https://fivethirtyeight.com/features/can-you-parallel-park-your-car/
https://fivethirtyeight.com/features/can-you-parallel-park-your-car/

Example: 538’s The Riddler ii

- This can be modeled using a Bernoulli distribution with
parameter p = P(T = Yes).

- Recall, this is the sampling distribution.

- To estimate p, we can simulate B = 1000 samples, compute
T for each sample, and count the proportion p of samples for
which T" = VYes.

- This is Monte Carlo integration!

- The estimate of the variance of T"is p(1 — p), and therefore

our standard error for our estimate p is

p(1—p)
=

A

se(p) =



- Assume we have a sample of size 2 from a standard normal
distribution: X1, X5.

- We want to estimate the expected value of their absolute
difference:

9<X1,X2) = ’X1 - X2’-

- How can we do this? Monte Carlo integration!



B <- 1989

norm_varsl <- rnorm(B)

norm_vars2 <- rnorm(B)

# Compute statistic

gvars <- abs(norm_varsl - norm_vars2)
mean(gvars)

## [1] 1.124522

sd(gvars)/sqrt(B)

## [1] 0.01919893



Exercise

Using Monte Carlo simulations, find the average Euclidean distance
between two points uniformly and independently drawn from the
unit square, i.e. both the x and the y coordinates for a single point
are drawn from U (0, 1).

To help you find the solution, try to answer the following questions:

- What constitutes a sample? (Is it one point? Two points?)
- What is the statistic?

"



- Recall: if we have two points (x1, 1) and (x2, y2), their
Euclidean distance is

dist = \/(xl — Z9)? + (Y1 — y2)*.

- The answer to the questions:
- Asample is a pair of points.
- The statistic is the Euclidean distance between the two points
in the sample.



- The idea is therefore to generate multiple pairs of points and
compute their Euclidean distance. We get an estimate of the
average distance by taking the sample mean.



B <- 5000

# Using replicate, or a for loop
dist_vec <- replicate(B, {
pointl <- runif(2)
point2 <- runif(2)
dist <- sqrt(sum((pointl - point2)"2))
return(dist)

b

mean(dist_vec)
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## [1] 0.5167341

- If we look at a histogram of the sampling distribution, we can
see that it doesn’t look like a normal distribution.

hist(dist_vec, 50)



Solution v

Histogram of dist_vec
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- However, by the Central Limit Theorem, the sample mean of
the distances approximately follows a normal distribution.

- We can use this result to construct a 95% confidence interval
around our estimate.

theta <- mean(dist_vec)
se_dist <- sd(dist_vec)/sqrt(B)

c(theta - 1.96x*se_dist,
theta + 1.96*se_dist)

## [1] 0.5099299 0.5235383



- Be careful: There are two sampling distributions here, and you
should be able to distinguish between them.
- The sampling distribution of the distances (doesn’'t depend on
the sample size).
- The sampling distribution of the sample mean of the
distances (does depend on the sample size).



Mean squared error i

- Suppose we want to use an estimator 0 to estimate a
parameter 6.

- Recall § is a random variable with a distribution. We say the
estimator 0 is unbiased if its expected value is 6

E(6) = 6.

- We can study the (un)biasedness of 0 by using the mean
squared error (MSE):

MSE(@) = E [(9 _ 9)2} .
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Mean squared error ii

- Why? The MSE is related to the variance and the bias of 0:
A~ N N 2
MSE(0) = Var(d) + (E(6) - 0)

- This relates to what is called the variance-bias tradeoff:

- For a fixed MSE, lower bias implies higher variance and

vice-versa.
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- The sample mean is an unbiased estimate of the population
mean.

- However, it can be sensitive to outliers.

mean(c(1,5,2,8, 4))

##t [1] 4

mean(c(1,5,2,8, 100))

## [1] 23.2
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- An estimator of the mean that is less sensitive to outliers is
the trimmed mean.

- The idea is to remove the extreme values from the sample
before taking the mean.

- More precisely: let X1, ..., X, be arandom sample, and let
k < 0.5n be a positive integer.

- The k-th level trimmed mean is defined as:

1 n—k
> X,
n — 2k Pt

Xy =

where X(;) is the i-th order statistic.
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# Generate a standard normal
# sample of size 4
(norm_vars <- rnorm(4))

## [1] 1.42856694 -0.05512797 -0.34324464
-0.32587459

# Sort it
(norm_vars <- sort(norm_vars))

## [1] -0.34324464 -0.32587459 -0.05512797
1.42856694
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# Compute 1st level trimmed mean

mean(norm_vars[c(-1, -4)])

## [1] -0.1905013

# Compare to sample mean
mean(norm_vars)

## [1] 0.1760799

- We can generate a sample of size n = 20 and compare the
MSE of the sample mean with the 1st-level trimmed mean.

2%
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n <- 20
results <- replicate(3150, {
norm_vars <- sort(rnorm(n))

c(”"TM"” = mean(norm_vars[c(-1, -n)1),
"SM” = mean(norm_vars))

B

# Bias

rowMeans(results) - 0
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Hi ™ SM
## -0.001538027 -0.001478366

# MSE
rowMeans((results - 0)"2)

Hi ™ SM
## 0.05288323 0.05160470

- There isn't any outliers, so we get similar results for both
types of means.
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- Let's introduce outliers through a contaminated normal
distribution:

X ~ pN(0,1) + (1 — p)N(0, 100).

- In other words, X follows a mixture distribution.

-+ The second component, N(O, 100), is responsible for the
outliers in the sample.

- We can generate from a mixture distribution as follows:

- Generate from a Bernoulli distribution with probability p.
- IfY = 0, generate from the first component N (0, 1).
- If Y = 1, generate from the second component N (0, 100).
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p <- 0.9
n <- 20; B <- 2209

results <- replicate(B, {
sigmas <- sample(c(1, 10), n, TRUE,
c(p, 1 -p))
contnorm_vars <- rnorm(n, sigmas)
contnorm_vars <- sort(contnorm_vars)
c(”TM” = mean(contnorm_vars[c(-1, -n)]),
"SM” = mean(contnorm_vars))

b
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# Bias
rowMeans(results) - 0

H ™ SM
## 0.009495568 0.003335998

# MSE
rowMeans((results - 0)"2)

H ™ SM
## 0.1868042 0.5267837
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- As we can see, the two types of means have similar bias.
- But the trimmed mean has a lower MSE than the sample
mean.

- And therefore it has lower variance.

- Conclusion: With finite samples, we can sometimes find more
efficient estimates of the mean.
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Hypothesis testing i

- In hypothesis testing, we start with a null hypothesis about

our parameter 6:
HO 0= 90.

- We then use a test statistic to determine whether we should
reject or not the null hypothesis.
- A test statistic can also be an estimator, but more often it's a
transformation thereof.
- If we know the sampling distribution of our test statistic when
Hgy holds (i.e. 8 = 6y), then we can compute how likely it is to
observe some given values of a test statistic.
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Hypothesis testing ii

- This gives rise to the notion of a p-value: if your test statistic
is T', and the observed value (i.e. after you've plugged in your
data) is t, then the p-value is the following conditional
probability:

P(T >t | Hy hold).

- Finally, we can reject the null hypothesis if the p-value is
smaller than a predetermined level of significance a.
- With hypothesis testing, we can make two types of error:
- Type | error: Rejecting the null hypothesis when it holds. This

is typically controlled by our decision rule (i.e. when we call a
p-value significant).
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Hypothesis testing iii

- Type Il error: Not rejecting the null hypothesis when it doesn't
hold. All things being equal, we would prefer a test with a
smaller Type Il error rate.

- Power is 1 minus the Type Il error rate. By minimizing the
latter, we increase power. All things being equal, we would
prefer a test with higher power.

- Note: Power typically increases with the sample size. The
larger the sample size, the more likely we will reject the null
hypothesis.
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- We can use simulations to estimate the type | error rate.
- Here's the general idea:
- Simulate data assuming the null hypothesis holds.
- Perform a hypothesis test on the simulated data.
- Count the proportion of our simulations that lead to a
rejection of the null hypothesis.
- Note: To estimate power, simulate data when the null
hypothesis doesn't hold.
- Consider two normal distributions N (u1, 03) and N (uz, 02),
and assume that the null hypothesis is Hy : 11 = po.

34



- We can generate from these two distributions by using the
same mean, and use a t-test to decide whether we reject H
or not.

- This can be done by comparing our p-value to our significance

level o

- Our estimate of the type | error rate would be the proportion
of simulated datasets that led to a rejected t-test.
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Number of simulations
<- 1000

Sample size for data
<- 20

Same mean

= o ® W =

mul <- mu2 <- 0@
# Same variance; could also be different
sigmal <- sigma2 <- 1
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results <- replicate(B, {
# Generate two samples
norm_varsl <- rnorm(n, mul, sigmal)
norm_vars2 <- rnorm(n, mu2, sigma2)
# Perform t-test
output <- t.test(norm_varsl, norm_vars2)
# alpha = 0.05
return(output$p.value < 0.05)
b

table(results)/B
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## results
#t# FALSE TRUE
## 0.954 0.046

- Our estimate of the Type | error rate is close to our
significance level a = 0.05.
- Question: To increase the accuracy, should we increase B or n?
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