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Lecture Objectives

• Recall the definition of a statistic and its sampling distribution
• Explain how simulations can be used for estimation and
hypothesis testing

• Design and conduct a simulation study
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Motivation

• Over the last few weeks, we talked about generating random
variables and used them to estimate integrals.

• Starting this week, we will investigate how these ideas can be
used for data analysis.

• How to use simulations to estimate population parameters.
• How to use simulations to perform hypothesis testing.
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Definitions i

First, recall the following definitions:

• A statistic is a function of a sample, i.e. from a sample
X1, . . . , Xn compute an output.

• Sample mean, sample variance, etc.
• Histogram, empirical CDF

• An estimator is a statistic θ̂ is a statistic used to estimate (or
“approximate”) a population parameter θ.

• The sample mean estimates the population mean
• The empirical CDF approximates the population CDF.
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Definitions ii

• A statistic is a random variable, because it is a function of the
sample. Therefore it has a distribution: the sampling
distribution.

• If X1, . . . , Xn are N(µ, σ2), then the sampling distribution
for the sample mean is N(µ, σ2/n)
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Remark

• The sampling distribution is often a function of unknown
population parameters.

• Or even the type of distribution may be unknown.

• Monte Carlo methods can be used to estimate the sampling
distribution and derive quantities of interest.

• E.g. Mean Squared Error, percentiles.
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Example: 538’s The Riddler i

• Refer to this post:
https://fivethirtyeight.com/features/can-you-
parallel-park-your-car/

• The population parameter we want to estimate is
P (Have to parallel park).

• A sample is an arrangement of four cars in six parking spots,
with each arrangement equally likely.

• From a sample, we can determine if the Riddler will have to
parallel park or not.

• Our statistic T is binary: Yes or No.
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Example: 538’s The Riddler ii

• This can be modeled using a Bernoulli distribution with
parameter p = P (T = Yes).

• Recall, this is the sampling distribution.

• To estimate p, we can simulate B = 1000 samples, compute
T for each sample, and count the proportion p̂ of samples for
which T = Yes.

• This is Monte Carlo integration!

• The estimate of the variance of T is p̂(1 − p̂), and therefore
our standard error for our estimate p̂ is

se(p̂) =
√

p̂(1 − p̂)
B

.
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Example i

• Assume we have a sample of size 2 from a standard normal
distribution: X1, X2.

• We want to estimate the expected value of their absolute
difference:

g(X1, X2) = |X1 − X2|.

• How can we do this? Monte Carlo integration!
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Example ii

B <- 1989
norm_vars1 <- rnorm(B)
norm_vars2 <- rnorm(B)
# Compute statistic
gvars <- abs(norm_vars1 - norm_vars2)
mean(gvars)

## [1] 1.124522

sd(gvars)/sqrt(B)

## [1] 0.01919893
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Exercise

Using Monte Carlo simulations, find the average Euclidean distance
between two points uniformly and independently drawn from the
unit square, i.e. both the x and the y coordinates for a single point
are drawn from U(0, 1).

To help you find the solution, try to answer the following questions:

• What constitutes a sample? (Is it one point? Two points?)
• What is the statistic?
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Solution i

• Recall: if we have two points (x1, y1) and (x2, y2), their
Euclidean distance is

dist =
√

(x1 − x2)2 + (y1 − y2)2.

• The answer to the questions:
• A sample is a pair of points.
• The statistic is the Euclidean distance between the two points
in the sample.
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Solution ii

• The idea is therefore to generate multiple pairs of points and
compute their Euclidean distance. We get an estimate of the
average distance by taking the sample mean.
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Solution iii

B <- 5000

# Using replicate, or a for loop
dist_vec <- replicate(B, {

point1 <- runif(2)
point2 <- runif(2)
dist <- sqrt(sum((point1 - point2)^2))
return(dist)

})

mean(dist_vec)
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Solution iv

## [1] 0.5167341

• If we look at a histogram of the sampling distribution, we can
see that it doesn’t look like a normal distribution.

hist(dist_vec, breaks = 50)

15



Solution v
Histogram of dist_vec
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Solution vi

• However, by the Central Limit Theorem, the sample mean of
the distances approximately follows a normal distribution.

• We can use this result to construct a 95% confidence interval
around our estimate.

theta <- mean(dist_vec)
se_dist <- sd(dist_vec)/sqrt(B)

c(theta - 1.96*se_dist,
theta + 1.96*se_dist)

## [1] 0.5099299 0.5235383

17



Solution vii

• Be careful: There are two sampling distributions here, and you
should be able to distinguish between them.

• The sampling distribution of the distances (doesn’t depend on
the sample size).

• The sampling distribution of the sample mean of the
distances (does depend on the sample size).
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Mean squared error i

• Suppose we want to use an estimator θ̂ to estimate a
parameter θ.

• Recall θ̂ is a random variable with a distribution. We say the
estimator θ̂ is unbiased if its expected value is θ:

E(θ̂) = θ.

• We can study the (un)biasedness of θ̂ by using the mean
squared error (MSE):

MSE(θ̂) = E
[(

θ̂ − θ
)2

]
.
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Mean squared error ii

• Why? The MSE is related to the variance and the bias of θ̂:

MSE(θ̂) = Var(θ̂) +
(
E(θ̂) − θ

)2
.

• This relates to what is called the variance-bias tradeoff:
• For a fixed MSE, lower bias implies higher variance and
vice-versa.
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Example i

• The sample mean is an unbiased estimate of the population
mean.

• However, it can be sensitive to outliers.

mean(c(1,5,2,8, 4))

## [1] 4

mean(c(1,5,2,8, 100))

## [1] 23.2
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Example ii

• An estimator of the mean that is less sensitive to outliers is
the trimmed mean.

• The idea is to remove the extreme values from the sample
before taking the mean.

• More precisely: let X1, . . . , Xn be a random sample, and let
k < 0.5n be a positive integer.

• The k-th level trimmed mean is defined as:

X̄[k] = 1
n − 2k

n−k∑
i=k+1

X(i),

where X(i) is the i-th order statistic.
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Example iii

# Generate a standard normal
# sample of size 4
(norm_vars <- rnorm(4))

## [1] 1.42856694 -0.05512797 -0.34324464
-0.32587459

# Sort it
(norm_vars <- sort(norm_vars))

## [1] -0.34324464 -0.32587459 -0.05512797
1.42856694
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Example iv

# Compute 1st level trimmed mean
mean(norm_vars[c(-1, -4)])

## [1] -0.1905013

# Compare to sample mean
mean(norm_vars)

## [1] 0.1760799

• We can generate a sample of size n = 20 and compare the
MSE of the sample mean with the 1st-level trimmed mean.
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Example v

n <- 20
results <- replicate(3150, {

norm_vars <- sort(rnorm(n))

c(”TM” = mean(norm_vars[c(-1, -n)]),
”SM” = mean(norm_vars))

})

# Bias
rowMeans(results) - 0
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Example vi

## TM SM
## -0.001538027 -0.001478366

# MSE
rowMeans((results - 0)^2)

## TM SM
## 0.05288323 0.05160470

• There isn’t any outliers, so we get similar results for both
types of means.
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Example vii

• Let’s introduce outliers through a contaminated normal
distribution:

X ∼ pN(0, 1) + (1 − p)N(0, 100).

• In other words, X follows a mixture distribution.
• The second component, N(0, 100), is responsible for the
outliers in the sample.

• We can generate from a mixture distribution as follows:
• Generate from a Bernoulli distribution with probability p.
• If Y = 0, generate from the first component N(0, 1).
• If Y = 1, generate from the second component N(0, 100).
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Example viii

p <- 0.9
n <- 20; B <- 2209

results <- replicate(B, {
sigmas <- sample(c(1, 10), n, replace = TRUE,

prob = c(p, 1 - p))
contnorm_vars <- rnorm(n, sd = sigmas)
contnorm_vars <- sort(contnorm_vars)
c(”TM” = mean(contnorm_vars[c(-1, -n)]),

”SM” = mean(contnorm_vars))
})
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Example ix

# Bias
rowMeans(results) - 0

## TM SM
## 0.009495568 0.003335998

# MSE
rowMeans((results - 0)^2)

## TM SM
## 0.1868042 0.5267837
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Example x

• As we can see, the two types of means have similar bias.
• But the trimmed mean has a lower MSE than the sample
mean.

• And therefore it has lower variance.

• Conclusion: With finite samples, we can sometimes find more
efficient estimates of the mean.
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Hypothesis testing i

• In hypothesis testing, we start with a null hypothesis about
our parameter θ:

H0 : θ = θ0.

• We then use a test statistic to determine whether we should
reject or not the null hypothesis.

• A test statistic can also be an estimator, but more often it’s a
transformation thereof.

• If we know the sampling distribution of our test statistic when
H0 holds (i.e. θ = θ0), then we can compute how likely it is to
observe some given values of a test statistic.
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Hypothesis testing ii

• This gives rise to the notion of a p-value: if your test statistic
is T , and the observed value (i.e. after you’ve plugged in your
data) is t, then the p-value is the following conditional
probability:

P (T > t | H0 hold).

• Finally, we can reject the null hypothesis if the p-value is
smaller than a predetermined level of significance α.

• With hypothesis testing, we can make two types of error:
• Type I error: Rejecting the null hypothesis when it holds. This
is typically controlled by our decision rule (i.e. when we call a
p-value significant).
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Hypothesis testing iii

• Type II error: Not rejecting the null hypothesis when it doesn’t
hold. All things being equal, we would prefer a test with a
smaller Type II error rate.

• Power is 1 minus the Type II error rate. By minimizing the
latter, we increase power. All things being equal, we would
prefer a test with higher power.

• Note: Power typically increases with the sample size. The
larger the sample size, the more likely we will reject the null
hypothesis.
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Example i

• We can use simulations to estimate the type I error rate.
• Here’s the general idea:

• Simulate data assuming the null hypothesis holds.
• Perform a hypothesis test on the simulated data.
• Count the proportion of our simulations that lead to a
rejection of the null hypothesis.

• Note: To estimate power, simulate data when the null
hypothesis doesn’t hold.

• Consider two normal distributions N(µ1, σ2
1) and N(µ2, σ2

2),
and assume that the null hypothesis is H0 : µ1 = µ2.
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Example ii

• We can generate from these two distributions by using the
same mean, and use a t-test to decide whether we reject H0

or not.

• This can be done by comparing our p-value to our significance
level α.

• Our estimate of the type I error rate would be the proportion
of simulated datasets that led to a rejected t-test.
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Example iii

# Number of simulations
B <- 1000
# Sample size for data
n <- 20
# Same mean
mu1 <- mu2 <- 0
# Same variance; could also be different
sigma1 <- sigma2 <- 1
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Example iv

results <- replicate(B, {
# Generate two samples
norm_vars1 <- rnorm(n, mu1, sigma1)
norm_vars2 <- rnorm(n, mu2, sigma2)
# Perform t-test
output <- t.test(norm_vars1, norm_vars2)
# alpha = 0.05
return(output$p.value < 0.05)

})

table(results)/B
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Example v

## results
## FALSE TRUE
## 0.954 0.046

• Our estimate of the Type I error rate is close to our
significance level α = 0.05.

• Question: To increase the accuracy, should we increase B or n?
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