
Numerical Methods

Max Turgeon

STAT 3150–Statistical Computing

Lecture Objectives

• Describe the main differences between computer arithmetic
and “normal” arithmetic.

• Apply root finding methods for one-dimensional problems.

2

Motivation

• Many estimators can be defined as solutions to a given
equation or optimization problem.

• For the next few weeks, we will discuss numerical methods
and optimization

• This will also serve as a good introduction to using R as a
programming language.

3

Question

• Can you give examples of estimators defined by solving an
equation f(x) = c?

• Can you recall an example from the notes/assignments?

4

Testing equality i

• To test for equality of integers, booleans or strings, we can use
==.

• 3 == 4, TRUE == FALSE, ”hello” == ”world”.

• But with decimal numbers, the equality operator may behave
in surprising ways

Expected
(0.5 + 0.5) == 1

[1] TRUE

5

Testing equality ii

Unexpected
(0.1 + 0.2) == 0.3

[1] FALSE

Why?
0.3 - (0.1 + 0.2)

[1] -5.551115e-17

6

Testing equality iii

• In computer’s memory, decimal numbers are essentially
represented in binary scientific notation.

• Which leads to rounding errors that may be hard to predict.

• R gives us two functions to test equality more carefully:
• all.equal: Tests for “near equality”, i.e. within a tolerance
level

• identical: Tests for whether two objects are identical
(including length, attributes, etc.).

7

Testing equality iv

all.equal(0.1 + 0.2, 0.3)

[1] TRUE

identical(0.1 + 0.2, 0.3)

[1] FALSE

8

Testing equality v

But be careful!
all.equal(1, 2)

[1] ”Mean relative difference: 1”

Better
isTRUE(all.equal(1, 2))

[1] FALSE

9

Testing equality vi

• Another approach: check whether abs(x - y) < epsilon,
for an epsilon of your choice.

abs(0.3 - (0.2 + 0.1)) < 10^-10

[1] TRUE

10

Overflow and underflow

• Another way in which computer arithmetic can be surprising:
very small and very large numbers.

• Small numbers may be rounded down to zero.
• Large numbers will be turn into Inf.

• In both cases, there are two strategies that can help:
• Simplify expressions by hand as much as you can first:

n!
(n−2)! = n(n − 1).

• Compute on logarithmic scale, and convert answer back to
original scale with exp.

11

Example i

• We know the Poisson mass function is

P (X = k) = e−λλk

k!
> 0.

• But when k is large, we may run into underflow issues.

d is for density
dpois(100, lambda = 1)

[1] 3.941866e-159

12

Example ii

dpois(200, lambda = 1)

[1] 0

Use logarithms
dpois(200, lambda = 1, log = TRUE)

[1] -864.232

13

Exercise

Using the properties of logarithms, evaluate

Γ
(

n−1
2

)
Γ

(
1
2

)
Γ

(
n−2

2

) ,

for n = 400. Use lgamma to evaluate the Gamma function on the
logarithmic scale.

14

Solution

n <- 400
With gamma
(gamma(0.5*(n-1))/(gamma(0.5)*gamma(0.5*(n-2))))

[1] NaN

With lgamma
exp(lgamma(0.5*(n-1)) - lgamma(0.5) - lgamma(0.5*(n-2)))

[1] 7.953876

15

Finding the roots of a function

• The first class of numerical methods we will look at our root
finding algorithms (in one dimension).

• Assume we have a continuous function f(x) of one variable.
For a given constant c, we want to find the values x such that
f(x) = c.

• Equivalent to replacing f(x) with f ′(x) = f(x) − c and
looking for when f ′(x) = 0.

• We will look at two methods:
• Bisection method
• Brent’s method

16

Bisection method i

• Assume that we have f(a) and f(b) are nonzero and have
opposite sign.

• Exactly one is negative, the other is positive.

• Because f is continuous, the Intermediate Value Theorem tells
us that there must be a value x ∈ (a, b) such that f(x) = 0.

• It may not be unique, but there’s at least one such x.

17

Bisection method ii

• With the bisection method, we look at the mid-point of [a, b]:
x1 = b−a

2 + a = b+a
2 , and we evaluate f(x1).

• If f(a) and f(x1) have the same sign, then the root is in the
interval (x1, b).

• If f(a) and f(x1) have opposite sign, then the root is in the
interval (a, x1).

• We then repeat the process on the new interval, which gives
us a sequence of “guesses” x1, x2, x3,

• This sequence is guaranteed to converge to a root of
f(x) = 0.

• We stop when we are “close enough”, i.e. when |f(xn)| < ϵ.

18

Demo

See this video: https://youtu.be/zkd6CLfNNe8

19

https://youtu.be/zkd6CLfNNe8

Example i

• We will look at the function

f(x) = a2 + x2 + 2ax

n − 1
− (n − 2),

for a = 0.5 and n = 20, on the interval (0, 5n).

a <- 0.5
n <- 20
First create a function
fun <- function(x) {
a^2 + x^2 + 2*a*x/(n-1) - n + 2

}

20

Example ii

Check output at interval bounds
x_lb <- 0 # Lower bound
x_ub <- 5*n # Upper bound

c(fun(x_lb), fun(x_ub))

[1] -17.750 9987.513

21

Example iii

Set up----
x_next <- 0.5*(x_ub - x_lb) + x_lb # Midpoint
epsilon <- 10^-10
f_lb <- fun(x_lb)
f_ub <- fun(x_ub)
f_next <- fun(x_next)
iterations <- 0

22

Example iv

while(abs(f_next) > epsilon) {
iterations <- iterations + 1
if (f_ub*f_next > 0) {
x_ub <- x_next # same sign, move left
f_ub <- fun(x_ub) } else {
x_lb <- x_next # opposite sign, move right
f_lb <- fun(x_lb) }

x_next <- 0.5*(x_ub - x_lb) + x_lb
f_next <- fun(x_next)

}

23

Example v

Our estimate the solution f(x) = 0
x_next

[1] 4.186841

Number of iterations
iterations

[1] 40

24

Exercise

Use the bisection method to find the solution to the equation

cos(x) = x3.

25

Solution i

• First, we can look at the solution of g(x) = 0, for
g(x) = cos(x) − x3.

• Based on our knowledge of these two functions, we deduce
that a solution, if it exists, must be positive.

• Let’s look at the interval [0, 2]

First create a function
g_fun <- function(x) {
cos(x) - x^3

}

26

Solution ii

Check output at interval bounds
x_lb <- 0 # Lower bound
x_ub <- 2 # Upper bound

c(g_fun(x_lb), g_fun(x_ub))

[1] 1.000000 -8.416147

27

Solution iii

Set up----
x_next <- 0.5*(x_ub - x_lb) + x_lb # Midpoint
epsilon <- 10^-10
g_lb <- g_fun(x_lb)
g_ub <- g_fun(x_ub)
g_next <- g_fun(x_next)
iterations <- 0

28

Solution iv

while(abs(g_next) > epsilon) {
iterations <- iterations + 1
if (g_ub*g_next > 0) {
x_ub <- x_next # same sign, move left
g_ub <- g_fun(x_ub) } else {
x_lb <- x_next # opposite sign, move right
g_lb <- g_fun(x_lb) }

x_next <- 0.5*(x_ub - x_lb) + x_lb
g_next <- g_fun(x_next)

}

29

Solution v

Our estimate the solution g(x) = 0
x_next

[1] 0.865474

Number of iterations
iterations

[1] 34

30

Solution vi

Plot functions to check
xseq <- seq(-2, 2, length.out = 100)
plot(xseq, cos(xseq), type = ”l”)
lines(xseq, xseq^3)
abline(v = x_next, lty = 2)

31

Solution vii

−2 −1 0 1 2

−
0.

4
−

0.
2

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

xseq

co
s(

xs
eq

)

32

Brent’s method i

• The bisection method is guaranteed to converge.
• Intermediate Value Theorem

• But convergence can be slow…
• For an initial interval of length L, after n step the bracketing
interval has length L/2n.

• Other methods (e.g. secant method) can converge faster, but
they’re not guaranteed to converge…

• Brent’s method combines the convergence speed of these
methods, but guarantees convergence by keeping the root
within a shrinking interval.

33

Brent’s method ii

• I will give a general description the algorithm, but today we
will use R’s implementation.

• Next lecture: you will implement it.

34

Brent’s method iii

Algorithm
Start with interval [a, b] and continuous function f(x). The values
f(a), f(b) have opposite signs.

1. Define a third point (c, f(c)), where c is the value at which a
linear interpolation crosses the x-axis. Depending on the sign
of f(c), we know the solution f(x) = 0 falls inside the
interval (a, c) or (c, b).

2. Fit a sideways parabola to all three points, and find the
intersection x1 with the x-axis. If x1 falls outside the interval
from Step 1, replace x1 by the midpoint of the interval
(i.e. bisection).

3. Repeat until convergence.

35

Demo i

−3 −2 −1 0 1 2 3

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

1.
5

2.
0

x

f(
x)

36

Demo ii

−3 −2 −1 0 1 2 3

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

1.
5

2.
0

x

f(
x)

37

Demo iii

−3 −2 −1 0 1 2 3

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

1.
5

2.
0

x

f(
x)

38

Demo iv

−3 −2 −1 0 1 2 3

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

1.
5

2.
0

x

f(
x)

39

Demo v

−3 −2 −1 0 1 2 3

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

1.
5

2.
0

x

f(
x)

40

Example i

• We will use the same example as above:

f(x) = a2 + x2 + 2ax

n − 1
− (n − 2),

for a = 0.5 and n = 20, on the interval (0, 5n).

a <- 0.5
n <- 20
Create a function
fun <- function(x) {
a^2 + x^2 + 2*a*x/(n-1) - n + 2

}

41

Example ii

• We will use the function uniroot in R:
• The first argument is the function f(x).
• The second argument is the interval [a, b].
• The argument tol controls the convergence.

output <- uniroot(f = fun,
interval = c(0, 5*n),
tol = 10^-10)

names(output)

[1] ”root” ”f.root” ”iter” ”init.it”
”estim.prec”

42

Example iii

output$root

[1] 4.186841

output$iter

[1] 16

43

Exercise

Use Brent’s method to find the root of

f(x) = e−x (3.2 sin(x) − 0.5 cos(x)) ,

on the interval [3, 4].

44

Solution

result <- uniroot(function(x) {
exp(-x)*(3.2*sin(x) - 0.5*cos(x))
}, interval = c(3, 4))

result$root

[1] 3.296589

45

Summary

• We discussed some important differences between computer
arithmetic and “normal” arithmetic.

• Rounding errors
• Overflow and underflow

• We introduced two methods for finding roots f(x) = 0 in
one-dimension.

• Why can’t we apply these methods in higher dimensions?

• On Thursday, we will see how this can be applied to Maximum
Likelihood Estimation.

46

