
Optimization

Max Turgeon

STAT 3150–Statistical Computing

Lecture Objectives

• Give examples of optimisation problems in statistics.
• Apply the Newton-Raphson algorithm to compute Maximum
Likelihood estimates.

2

Motivation

• Optimization is a very old and broad field of applied
mathematics.

• It is older than calculus: see Heron’s problem.

• It plays an important role in statistics, but also computational
biology, economics, mathematical finance, etc.

• Our discussion will necessarily be brief, but I will try to give a
sample of the types of statistical problems that can be solved
using optimization.

• For more details, I recommend Optimization (2013) by Kenneth
Lange.

3

Problem statement

• In very general terms, the basic optimization problem is as
follows.

• Let A be a set (e.g. a subset of Rn, a set of integers, etc.), and
let f be a real-valued function on A.

• We are looking for a value x0 ∈ A such that:
• Minimization: f(x0) ≤ f(x) for all x ∈ A.
• Maximization: f(x0) ≥ f(x) for all x ∈ A.

• The set A can be defined via a combination of equality and
inequality constraints.

• For a multinomial model, we want K probabilities pk such
that 0 ≤ pk ≤ 1 and

∑K
k=1 pk = 1.

4

Lasso regression

• In linear regression, we find an estimate β̂ by minimizing least
squares:

β̂ = arg min
β∈Rp

n∑
i=1

(
Yi − XT

i β
)2

.

• In lasso regression, we add a constraint on the L1 norm of β :

β̂Lasso = arg min
β∈Rp

n∑
i=1

(
Yi − XT

i β
)2

,
p∑

j=1
|βj| ≤ λ.

• Why? By adding the L1 constraint, some of the components of
the solution β̂Lasso can be exactly zero, leading to variable
selection.

5

Dimension reduction

• Let Y be a p-dimensional random vector.
• In dimension reduction, we are looking for a linear
combination wT Y that optimises a given criterion.

• For example:
• In Principal Component Analysis, we are looking to maximise

Var
(
wT Y

)
.

• In Independent Component Analysis, we are looking to
minimise mutual information.

6

Mixture models

• A mixture model can be defined as follows:

F (x) =
K∑

k=1
πkFk(x),

where Fk is a distribution function for all k and
∑K

k=1 πk = 1.
• The likelihood can be difficult to maximize directly.
• Instead, we typically use the Expectation-Maximization
algorithm.

7

Machine learning

• A common goal in machine learning is prediction: given a
vector of features X, find a function f such that

L(Y, f(X))

is minimized.
• Here L(Y, ·) is a loss function. For example:

• L(Y, f(X)) = (Y − f(X))2

• L(Y, f(X)) = |Y − f(X)|

8

Newton-Raphson method i

• The Newton-Raphson method is the only optimization
technique we will discuss in this module.

• It is a very important technique and serves as motivation for
more advanced methods.

• Suppose we have a twice differentiable function f : A → R,
where A ⊆ Rn. We want to find the maximum of f on A.

• We can approximate f using a Taylor expansion:

f(x + h) ≈ f(x) + ∇f(x)T h + 1
2

hT D2f(x)h,

where ∇f(x) is the vector of first-order derivatives and
D2f(x) is the matrix of second-order derivatives.

9

Newton-Raphson method ii

• They are called the gradient and the Hessian, respectively.
• In other words, we are approximating f in a neighbourhood of

x using a quadratic function of h.
• We know how to find the maximum of a quadratic function:
take the derivative, set it equal to zero, and solve for h.

• Why? The derivative of a quadratic is a linear function. Easy to
solve!

• The derivative of the Taylor approximation with respect to h is

d

dh

[
f(x) + ∇f(x)T h + 1

2
hT D2f(x)h

]
= ∇f(x)+D2f(x)h.

10

Newton-Raphson method iii

• Setting the derivative equal to zero and solving for h gives

h = −[D2f(x)]−1∇f(x).

• Therefore, the approximate maximum of our function f is a
neighbourhood of x occurs at

x + h = x − [D2f(x)]−1∇f(x).

• In one-dimension, this simplifies to

x + h = x − f ′(x)
f ′′(x)

.

11

Newton-Raphson method iv

Algorithm
Let x0 be an initial value. Then construct a sequence via

xn+1 = xn − [D2f(xn)]−1∇f(xn).

If the initial value x0 is “sufficiently close” to a maximum (or
minimum) of f , then the sequence xn will converge to that
maximum (or minimum).

12

Example 1 i

• Consider the function f(x) = −x2 + sin(x).
• The derivatives are

f ′(x) = −2x + cos(x), f ′′(x) = −2 − sin(x).

13

Example 1 ii

Create functions
gradient <- function(x) -2*x + cos(x)
hessian <- function(x) -2 - sin(x)
Set-up parameters
x_current <- 1
x_next <- x_current -
gradient(x_current)/hessian(x_current)

tol <- 10^-10
iter <- 1

14

Example 1 iii

while (abs(x_current - x_next) > tol &
iter < 100) {

iter <- iter + 1
x_current <- x_next
step <- gradient(x_current)/hessian(x_current)
x_next <- x_current - step

}
x_next

[1] 0.4501836

15

Example 1 iv

plot(function(x) -x^2 + sin(x), from = -1, to = 1)
abline(v = x_next, lty = 2)

16

Example 1 v

−1.0 −0.5 0.0 0.5 1.0

−
1.

5
−

1.
0

−
0.

5
0.

0

x

fu
nc

tio
n(

x)
 −

x^
2

+
 s

in
(x

)

17

When does it go wrong?

• Newton-Raphson usually goes wrong in one of two ways:
• ∇f(x0) = 0 and you’re stuck at x0.
• The sequence xn does not converge.

• That’s why we kept track of the number of iterations, so that
we aren’t stuck in an infinite loop.

• When you reach the maximum number of iterations, you can:
• Try a different initial value.
• Look at a graph and see if there is indeed a
maximum/minimum.

• Consider using a different approach (e.g. gradient descent).

18

Example (not convergent)

• Consider f(x) = 0.25x4 − x2 + 2x.
• The derivatives are

f ′(x) = x3 − 2x + 2, f ′′(x) = 3x2 − 2.

• If we start at x0 = 0, then at the next iteration we get

x1 = x0 − f ′(x0)
f ′′(x0)

= 0 − 2
−2

= 1.

• Next we get

x2 = x1 − f ′(x1)
f ′′(x1)

= 1 − 1
1

= 0.

• Therefore, we are stuck in an infinite loop.
• Solution: Use a different starting value.

19

Exercise

Find the minimum for the function

f(x) = 5x + 5x2 + 5 log(1 + e−x).

20

Solution i

We need to compute the first and second derivatives:

f ′(x) = 5 + 10x − 5e−x

1 + e−x
= 5 + 10x − 5

1 + ex
,

f ′′ = 10 + 5ex

(1 + ex)2 .

21

Solution ii

gradient <- function(x) 5 + 10*x - 5/(1+exp(x))
hessian <- function(x) 10 + 5*exp(x)/(1+exp(x))^2

x_current <- 1
x_next <- x_current -
gradient(x_current)/hessian(x_current)

tol <- 10^-10
iter <- 1

22

Solution iii

while (abs(x_current - x_next) > tol &
iter < 100) {

iter <- iter + 1
x_current <- x_next
step <- gradient(x_current)/hessian(x_current)
x_next <- x_current - step

}
x_next

[1] -0.2223235

23

Poisson regression i

• Poisson regression is a generalization of linear regression
where the outcome variable follows a Poisson distribution.

• Let (Yi, Xi), i = 1, . . . , n, be pairs of outcome and covariate
variables. We assume the following relationship:

Yi ∼ Pois(µ(Xi)), log(µ(Xi)) = β0 + β1Xi.

• We will use the Newton-Raphson method to find the
Maximum Likelihood estimate θ̂ = (β̂0, β̂1).

• First, let’s write down the likelihood:

L(θ) =
n∏

i=1

µ(Xi)Yi exp (−µ(Xi))
Yi!

.

24

Poisson regression ii

• Take the logarithm:

ℓ(θ) =
n∑

i=1
Yi log(µ(Xi)) − µ(Xi) − log(Yi!)

=
n∑

i=1
Yi (β0 + β1Xi) − exp(β0 + β1Xi) − log(Yi!)

∝
n∑

i=1
Yi (β0 + β1Xi) − exp(β0 + β1Xi).

25

Poisson regression iii

• The first-order derivatives are

∂ℓ(θ)
∂β0

=
n∑

i=1
Yi − exp(β0 + β1Xi),

∂ℓ(θ)
∂β1

=
n∑

i=1
YiXi − Xi exp(β0 + β1Xi).

26

Poisson regression iv

• The second-order derivatives are

∂2ℓ(θ)
∂β2

0
= −

n∑
i=1

exp(β0 + β1Xi),

∂2ℓ(θ)
∂β2

1
= −

n∑
i=1

X2
i exp(β0 + β1Xi),

∂2ℓ(θ)
∂β0∂β1

= −
n∑

i=1
Xi exp(β0 + β1Xi).

27

Poisson regression v

• We will fit a Poisson regression model to the “famous”
horseshoe crab dataset.

• The main covariate is the weight of female crabs.
• The outcome is the number of satellite males for that female
crab.

• The dataset can be found in the asbio package.

28

Poisson regression vi

library(asbio)
data(crabs)
y_vec <- crabs$satell
x_vec <- crabs$weight

gradient <- function(theta) {
mu_x <- exp(theta[1] + theta[2]*x_vec)
ell_b0 <- sum(y_vec - mu_x)
ell_b1 <- sum(y_vec*x_vec - x_vec*mu_x)
return(c(ell_b0, ell_b1))

}

29

Poisson regression vii

hessian <- function(theta) {
mu_x <- exp(theta[1] + theta[2]*x_vec)
ell_b0b0 <- -sum(mu_x)
ell_b1b1 <- -sum(x_vec^2*mu_x)
ell_b0b1 <- -sum(x_vec*mu_x)

hess <- matrix(c(ell_b0b0, ell_b0b1,
ell_b0b1, ell_b1b1),

ncol = 2)
return(hess)

}

30

Poisson regression viii

Set-up variables
x_current <- c(0, 1)
x_next <- x_current - solve(hessian(x_current),

gradient(x_current))
tol <- 10^-10
iter <- 1

31

Poisson regression ix

while(sum((x_current - x_next)^2) > tol &
iter < 100) {

iter <- iter + 1
x_current <- x_next
step <- solve(hessian(x_current),

gradient(x_current))
x_next <- x_current - step

}
x_next

[1] -0.4284053 0.5893041

32

Poisson regression x

• We can compare this to the built-in function glm in R:

fit <- glm(satell ~ weight, data = crabs,
family = poisson)

coef(fit)

(Intercept) weight
-0.4284053 0.5893041

33

Visualizing Newton-Raphson i

0.00

0.25

0.50

0.75

1.00

−2.0 −1.5 −1.0 −0.5 0.0
beta0

be
ta

1

34

Visualizing Newton-Raphson ii

0.00

0.25

0.50

0.75

1.00

−2.0 −1.5 −1.0 −0.5 0.0
beta0

be
ta

1

35

Some vocabulary

• In the context of Maximum Likelihood estimation, the gradient
and Hessian are given different names.

• The gradient ∇ℓ(θ | x) is called the score function.
• Exercise: The expected value of the score function is 0.

• The Hessian D2ℓ(θ | x) is related to the Fisher information
matrix I(θ):

I(θ) = −E
(
D2ℓ(θ | x)

)
.

36

Final remarks

• Newton-Raphson is an important optimisation method.
• In particular, it is commonly used with generalized linear
models.

• There exists optimisation methods that are gradient-free.
• See Nelder-Mead and the function optim.

• Where to go from here:
• Gradient descent
• Regularized regression (e.g. lasso)
• MM algorithms

37

