Optimization

Max Turgeon

STAT 3150-Statistical Computing



Lecture Objectives

- Give examples of optimisation problems in statistics.
- Apply the Newton-Raphson algorithm to compute Maximum
Likelihood estimates.



- Optimization is a very old and broad field of applied
mathematics.

- It is older than calculus: see Heron's problem.

- It plays an important role in statistics, but also computational
biology, economics, mathematical finance, etc.

- Our discussion will necessarily be brief, but | will try to give a
sample of the types of statistical problems that can be solved
using optimization.

- For more details, | recommend Optimization (2013) by Kenneth
Lange.



Problem statement

- In very general terms, the basic optimization problem is as
follows.
- Let A be a set (e.g. a subset of R™, a set of integers, etc.), and
let f be a real-valued function on A.
- We are looking for a value x¢y € A such that:
- Minimization: f(zo) < f(x) forallx € A.
- Maximization: f(zo) > f(z) forallz € A.
- The set A can be defined via a combination of equality and
inequality constraints.
- For a multinomial model, we want K probabilities pj such
that 0 < pp. < 1and Zszl pr = 1.



Lasso regression

- In linear regression, we find an estimate B by minimizing least
squares:
A n 2
b= argminz (Yi — XzTﬂ) .

BERP ;4

- In lasso regression, we add a constraint on the L1 norm of (3:

R n 2 P
6Lasso = arg HHHZ (Y; - XzTﬂ) ) Z|5J| <A
j=1

BER?P ;4

- Why? By adding the L1 constraint, some of the components of
the solution BLaSSO can be exactly zero, leading to variable

selection.



Dimension reduction

- Let Y be a p-dimensional random vector.
- In dimension reduction, we are looking for a linear
combination w’Y that optimises a given criterion.
- For example:
- In Principal Component Analysis, we are looking to maximise
Var (wTY).
- In Independent Component Analysis, we are looking to
minimise mutual information.



Mixture models

- A mixture model can be defined as follows:
K

F(z) =Y mFi(z),
k=1

where Fy is a distribution function for all k and Y0, 7, = 1.
- The likelihood can be difficult to maximize directly.
- Instead, we typically use the Expectation-Maximization
algorithm.



Machine learning

- A common goal in machine learning is prediction: given a
vector of features X, find a function f such that

L(Y, (X))
IS minimized.
- Here L(Y,-) is a loss function. For example:

- LY, f(X)) = (Y - f(X))?
- LY f(X) =Y = F(X)



Newton-Raphson method i

- The Newton-Raphson method is the only optimization
technique we will discuss in this module.

- Itis a very important technique and serves as motivation for
more advanced methods.

- Suppose we have a twice differentiable function f : A — R,
where A C R"™. We want to find the maximum of f on A.
- We can approximate f using a Taylor expansion:

f(x+h)=~ f(x)+ Vf(x)"h + ;hTDQf(x)h,

where V f(x) is the vector of first-order derivatives and
D?f(x) is the matrix of second-order derivatives.



Newton-Raphson method ii

- They are called the gradient and the Hessian, respectively.
- In other words, we are approximating f in a neighbourhood of
X using a quadratic function of h.
- We know how to find the maximum of a quadratic function:
take the derivative, set it equal to zero, and solve for h.
- Why? The derivative of a quadratic is a linear function. Easy to

solve!

- The derivative of the Taylor approximation with respect to h is

d

T 1 T N2 _ 2
= [£60) + V£ h + SHTD? ()] = V£ ()+D? ()



Newton-Raphson method iii

- Setting the derivative equal to zero and solving for h gives

h = —[Df(x)] 'V f(x).

- Therefore, the approximate maximum of our function f is a
neighbourhood of x occurs at

x+h = x — [D*f(x)] "'V f(x).

- In one-dimension, this simplifies to

f'(=)

x+h:x—fﬂ($)

"



Newton-Raphson method iv

Algorithm
Let xg be an initial value. Then construct a sequence via

Xn41 = Xp — {DQf(Xn)]_le%Xn)'

If the initial value xq is “sufficiently close” to a maximum (or
minimum) of f, then the sequence x,, will converge to that
maximum (or minimum).



Example 1 i

- Consider the function f(z) = —z?% + sin(z).
- The derivatives are

f'(z) = =2z + cos(x), f"(x)=—2—sin(x).



Example 1 ii

# Create functions

gradient <- function(x) -2*x + cos(x)

hessian <- function(x) -2 - sin(x)

# Set-up parameters

X_current <- 1

X_next <- x_current -
gradient(x_current)/hessian(x_current)

tol <- 10"-10

iter <- 1

14



Example 1 iii

while (abs(x_current - x_next) > tol &
iter < 100) {
iter <- iter + 1
X_current <- x_next
step <- gradient(x_current)/hessian(x_current)
X_next <- x_current - step
}

X_next

## [1] 0.4501836



Example 1 iv

plot(function(x) -x"2 + sin(x), -1, 1)
abline( Xx_next, 2)



T T T T
00 S0- 0'T- ST-

(X)uIs + zyX— (x)uonouny

>
—
&
Q
S
S
X
L

1.0

0.5

0.0

-0.5

1.0

17



When does it go wrong?

- Newton-Raphson usually goes wrong in one of two ways:
0 Vf(xo) = 0 and you're stuck at x.
- The sequence x,, does not converge.
- That’s why we kept track of the number of iterations, so that
we aren't stuck in an infinite loop.
- When you reach the maximum number of iterations, you can:
- Try a different initial value.
- Look at a graph and see if there is indeed a
maximum/minimum.

- Consider using a different approach (e.g. gradient descent).



Example (not convergent)

- Consider f(z) = 0.25z% — 2% + 2z.
- The derivatives are

fllz)=2 -2z +2, f'(x)=32"-2.

- If we start at g = 0, then at the next iteration we get

f! (o) 2
= — =0-——=1.
S f" (o) —2
- Next we get
f/($1) 1
e f" (1) 1

- Therefore, we are stuck in an infinite loop.

- Solution: Use a different starting value.

19



Exercise

Find the minimum for the function

f(z) =5z + 52° + 5log(1 + e*).

20



We need to compute the first and second derivatives:

—x

! =5+ 10x — =5+ 10x —
f(z) BT +e® R + e
He*

9

f =10+

21



gradient <- function(x) 5 + 10%*x - 5/(1+exp(x))
hessian <- function(x) 10 + 5*exp(x)/(1+exp(x))"2

X_current <- 1

X_next <- x_current -
gradient(x_current)/hessian(x_current)

tol <- 10"-10

iter <- 1

22



while (abs(x_current - x_next) > tol &
iter < 100) {
iter <- iter + 1
Xx_current <- x_next
step <- gradient(x_current)/hessian(x_current)
Xx_next <- x_current - step
}

x_next

## [1] -0.2223235

23



Poisson regression i

- Poisson regression is a generalization of linear regression
where the outcome variable follows a Poisson distribution.
- Let (Y3, X;), 1 =1,...,n, be pairs of outcome and covariate

variables. We assume the following relationship:
Y; ~ Pois(u(X;)),  log(u(X:)) = Bo + B X;.

- We will use the Newton-Raphson method to find the
Maximum Likelihood estimate 6 = (8o, A1 ).
- First, let's write down the likelihood:

o p(X)™ exp (—p(X5))
" }E! X))

24



Poisson regression ii

- Take the logarithm:

(6) = > Yilog((X0) ~ (X)) ~log(12)
En: Y; (Bo + /1.X;) — exp(Bo + B1.X;) — log(V3!)

Xn: Y (Bo + B1.X:) — exp(Bo + B1.Xa).
S

25



Poisson regression iii

- The first-order derivatives are

o) & |
85, —;Yz exp(fo + B1.Xi),
aO) &

=>"ViX; — Xiexp(Bo + 1 X,).
b o

26



Poisson regression iv

- The second-order derivatives are

820(f n
85(3) == ; exp(Bo + £1.Xi),
TUO) _ _ 5~ X2 exp(By + A1),
861 =1
8%¢(0)

9608 ; X; exp(Bo + PrXs)-

27



Poisson regression v

- We will fit a Poisson regression model to the “famous”
horseshoe crab dataset.
- The main covariate is the weight of female crabs.
- The outcome is the number of satellite males for that female
crab.

- The dataset can be found in the asbio package.

28



Poisson regression vi

library(asbio)
data(crabs)

y_vec <- crabs$satell
Xx_vec <- crabs$weight

gradient <- function(theta) {
mu_x <- exp(theta[1] + theta[2]*x_vec)
ell_bo <- sum(y_vec - mu_x)
ell_b1l <- sum(y_vec*x_vec - x_vec*mu_x)
return(c(ell_bo, ell_b1l))

29



Poisson regression vii

hessian <- function(theta) {
mu_x <- exp(theta[1] + theta[2]*x_vec)
ell_boObO <- -sum(mu_x)
ell_bilbl <- -sum(x_vec”2+mu_x)
ell_bObl <- -sum(x_vec*mu_x)

hess <- matrix(c(ell_bebo, ell_bObil,
ell_bobl, ell _bibl),
2)

return(hess)

30



Poisson regression viii

# Set-up variables
x_current <- c(0, 1)
Xx_next <- x_current - solve(hessian(x_current),

gradient(x_current))
tol <- 10"-10
iter <- 1

31



Poisson regression ix

while(sum((x_current - x_next)"2) > tol &
iter < 100) {
iter <- iter + 1
X_current <- X_next
step <- solve(hessian(x_current),
gradient(x_current))
X_next <- x_current - step

}

X_next

## [1] -0.4284053 0.5893041

32



Poisson regression X

- We can compare this to the built-in function glmin R:

fit <- glm(satell ~ weight, crabs,
poisson)

coef(fit)

## (Intercept) weight

##t -0.4284053 0.5893041

138



Visualizing Newton-Raphson i

/‘



Visualizing Newton-Raphson ii



Some vocabulary

- In the context of Maximum Likelihood estimation, the gradient
and Hessian are given different names.
- The gradient V£(6 | x) is called the score function.
- Exercise: The expected value of the score function is 0.
- The Hessian D?/((f | x) is related to the Fisher information
matrix Z(0):
I(6) = —E (D*(9 | x)).

36



Final remarks

- Newton-Raphson is an important optimisation method.

- In particular, it is commonly used with generalized linear
models.

- There exists optimisation methods that are gradient-free.
- See Nelder-Mead and the function optim.
- Where to go from here:

- Gradient descent
- Regularized regression (e.g. lasso)
- MM algorithms

37



