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Lecture Objectives

• Explain the difference between bootstrap and permutation
tests.

• Apply permutation tests to two-sample problems.
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Motivation

• When discussing bootstrap and jackknife, we constructed
confidence intervals for our estimates.

• Confidence intervals can be used for hypothesis testing:
• Check if value of population parameter under the null
hypothesis is contained in the interval.

• Permutation tests are a whole family of resampling strategies
that can be used specifically for hypothesis testing.

• And there are generally more powerful than bootstrap.
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Motivating example—T test i

• We will use the chickwts dataset (available in base R).
• Contains 71 observations: chick weight, and the type of feed
use.

boxplot(chickwts$weight ~ chickwts$feed)
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Motivating example—T test ii
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Motivating example—T test iii

• We will focus on two types of feed: soybean and linseed

soy_vec <- chickwts$weight[chickwts$feed == ”soybean”]
lin_vec <- chickwts$weight[chickwts$feed == ”linseed”]

c(length(soy_vec), length(lin_vec))

## [1] 14 12

• We are interested in whether different feed leads to
differences in weight.
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Motivating example—T test iv

• One way to formalize this into a hypothesis test is to test
whether the mean weight is the same for both groups:

H0 : µS = µL.

• Our estimators are the sample means for each group.
• In STAT 1150, we saw that we can use the t statistic to perform
a t-test for two means.

# By default, it assumes unequal variance
(fit <- t.test(soy_vec, lin_vec, var.equal = TRUE))
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Motivating example—T test v

##
## Two Sample t-test
##
## data: soy_vec and lin_vec
## t = 1.3208, df = 24, p-value = 0.199
## alternative hypothesis: true difference in
means is not equal to 0
## 95 percent confidence interval:
## -15.57282 70.92996
## sample estimates:
## mean of x mean of y
## 246.4286 218.7500
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Motivating example—T test vi

• We get a lot of information out of this:
• The sample means are 246.4 and 218.8, respectively.
• A 95% confidence interval for the mean difference is

(−15.6, 70.9)
• The p-value is 0.199

• Overall, we don’t have enough evidence to reject the null
hypothesis.

• But what were the assumptions?
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Motivating example—T test vii

• It’s helpful to recall what’s actually going on.

• Compute the sample means µ̂S and µ̂L.
• Compute the pooled variance σ̂2.
• Construct the t-statistic t = µ̂S−µ̂L

σ̂
√

n−1
S +n−1

L

.

• If the null hypothesis holds and if the weights are normally
distributed with the same variance, then t follows a t
distribution on nS + nL − 2 degrees of freedom.
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Motivating example—T test viii

# Let's bootstrap
B <- 5000
data <- chickwts[chickwts$feed %in% c(”soybean”,

”linseed”), ]
n <- nrow(data)
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Motivating example—T test ix

results <- replicate(B, {
indices <- sample(n, n, replace = TRUE)
data_b <- data[indices,]

soy_b <- data_b$weight[data_b$feed == ”soybean”]
lin_b <- data_b$weight[data_b$feed == ”linseed”]
mean(soy_b) - mean(lin_b)

})
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Motivating example—T test x

# 95% confidence interval
mu_diff <- mean(soy_vec) - mean(lin_vec)
se_boot <- sd(results)
c(mu_diff - 1.96*se_boot, mu_diff + 1.96*se_boot)

## [1] -12.38240 67.73955

• The bootstrap confidence interval is a bit narrower, but it still
leads to the same conclusion.

• On the other hand, how can we compute a p-value?
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Permutation tests i

• Permutation tests are a large family of resampling methods
that can be used to test hypotheses of the form

H0 : F = G,

where F, G are the distribution functions of two different
samples.

• You can see this as a generalization of the t-test in two ways:
• We replace equality of means by equality of distributions.
• We don’t assume the data follows a normal distribution.
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Permutation tests ii

• It can also be used to test for independence:
• If we have two variables X, Y , with FX , FY the marginal
distributions and FXY the joint distribution, independence is
equivalent to FXY = FXFY .

• The main idea is as follows:
• Let X1, . . . , Xn ∼ F and Y1, . . . , Ym ∼ G.
• If H0 : F = G holds, then X1, . . . , Xn, Y1, . . . , Ym ∼ F .
• Furthermore, any permutation of these n + m random
variables is also a sample from F !

• This gives us a way to “generate” data under the null
hypothesis.
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Permutation tests iii

Algorithm

Let N = n + m, and let θ̂ be the estimate for the original sample.

1. Permute the observations to get a sample Z1, . . . , ZN .
2. Compute the estimate θ̂(k) = θ̂(Z1, . . . , ZN).
3. Repeat these two steps K times.
4. The permutation p-value is given by

p̂ = 1 + ∑K
k=1 I(θ̂(k) ≥ θ̂)
K + 1

.
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A few observations i

• The procedure is usually considered approximate, because we
are not using all possible permutations.

• In practice, 1000 permutations will give a good approximation
for α = 0.05.

• Assume that our estimator is the difference of means, like in
the motivating example. To compute the permuted estimate
θ̂(k), we compute the sample mean of the first n observations,
the sample mean of the remaining m observations, and take
the difference.

• Remember: under the null hypothesis, group membership is
meaningless!
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A few observations ii

• In bootstrap, it was important to preserve the correlation
structure between different variables. With permutation tests,
the goal is to break the association in order to mimic the null
hypothesis.

• Permutations = Sampling without replacement.
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Example (cont’d) i

K <- 1000 # Number of permutations
combined_data <- c(soy_vec, lin_vec) # Combine data
N <- length(combined_data)
results <- replicate(K, {
perm_data <- combined_data[sample(N)] # Permute
soy_perm <- perm_data[1:length(soy_vec)] # Allocate
lin_perm <- perm_data[(length(soy_vec) + 1):N]
mean(soy_perm) - mean(lin_perm)

})
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Example (cont’d) ii

theta_hat <- mean(soy_vec) - mean(lin_vec)
hist(results, 50)
abline(v = theta_hat, lty = 2, lwd = 2)
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Example (cont’d) iii
Histogram of results
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Example (cont’d) iv

# Is this the right p-value?
mean(c(theta_hat, results) >= theta_hat)

## [1] 0.0989011

# What about this?
mean(abs(c(theta_hat, results)) >= abs(theta_hat))

## [1] 0.1928072
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Example (cont’d) v

• We used the difference in sample means as our test statistic,
but we can also use the t-statistic.

results2 <- replicate(K, {
perm_data <- combined_data[sample(N)] # Permute
soy_perm <- perm_data[1:length(soy_vec)] # Allocate
lin_perm <- perm_data[(length(soy_vec) + 1):N]
t.test(soy_perm, lin_perm)$statistic

})
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Example (cont’d) vi

t_hat <- t.test(soy_vec, lin_vec)$statistic
hist(results2, 50)
abline(v = t_hat, lty = 2, lwd = 2)
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Example (cont’d) vii
Histogram of results2
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Example (cont’d) viii

# One-sided p-value
mean(c(t_hat, results2) >= t_hat)

## [1] 0.1058941

# Two-sided p-value
mean(abs(c(t_hat, results2)) >= abs(t_hat))

## [1] 0.2247752
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Other test statistics i

• We already saw above that we can use different test statistics
for the same null hypothesis.

• On the other hand, you probably noticed that comparing
means is probably not strict enough for H0 : F = G.

• Distributions can be different but have the same mean.

• One way to more directly compare the full distribution is the
Kolmogorov-Smirnov test statistic:

D = max
1≤i≤N

|Fn(Zi) − Gm(Zi)| ,

where Fn, Gm are the empirical CDFs of X1, . . . , Xn and
Y1, . . . , Ym, respectively.

27



Other test statistics ii

• The asymptotic distribution of D under the null hypothesis is
known, but difficult to compute.

• Permutation tests are a simple alternative.
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Example (cont’d) i

results3 <- replicate(K, {
perm_data <- combined_data[sample(N)] # Permute
soy_perm <- perm_data[1:length(soy_vec)] # Allocate
lin_perm <- perm_data[(length(soy_vec) + 1):N]
ks.test(soy_perm, lin_perm)$statistic

})

D_hat <- ks.test(soy_vec, lin_vec)$statistic
hist(results3, 50)
abline(v = D_hat, lty = 2, lwd = 2)
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Example (cont’d) ii
Histogram of results3
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Example (cont’d) iii

# Only one-sided p-value
mean(c(D_hat, results3) >= D_hat)

## [1] 0.4405594
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Another example i

• We will use the same dataset, but compare sunflower and
linseed feeds.

sun_vec <- chickwts$weight[chickwts$feed==”sunflower”]
c(length(sun_vec), length(lin_vec))

## [1] 12 12
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Another example ii

K <- 1000 # Number of permutations
combined_data <- c(sun_vec, lin_vec) # Combine data
N <- length(combined_data)
results4 <- replicate(K, {

perm_data <- combined_data[sample(N)] # Permute
sun_perm <- perm_data[1:length(sun_vec)] # Allocate
lin_perm <- perm_data[(length(sun_vec) + 1):N]
ks.test(sun_perm, lin_perm)$statistic

})
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Another example iii

D_hat <- ks.test(sun_vec, lin_vec)$statistic
hist(results4, 50)
abline(v = D_hat, lty = 2, lwd = 2)

34



Another example iv
Histogram of results4
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Another example v

# Only one-sided p-value
mean(c(D_hat, results4) >= D_hat)

## [1] 0.001998002
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Final remarks

• This is our last module on resampling methods.
• We discussed jackknife, bootstrap and permutation tests.

• Bootstrap and jackknife have similar goals, but bootstrap is
almost always better.

• Permutation tests are specifically for hypothesis testing.

• Permutation tests are usually more powerful than looking at
bootstrap confidence intervals.

• Meaning, the probability of rejecting the null hypothesis when
it doesn’t hold is higher with permutation tests.

• Different test statistics will give different results.
• Monte Carlo simulations is helpful in understanding when we
should choose a given test statistic.
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