
R preliminaries

Max Turgeon

STAT 3150–Statistical Computing

Quick Introduction

2

Why use R?

• Modern statistics relies heavily on statistical computing.
• Simulation studies
• Data analysis

• R is a programming language that can be used on most
platforms (Mac, Windows, Linux, Solaris, etc.)

• R is very flexible.
• It can be extended via R packages.

• R offers a powerful interface for analyzing data and producing
high-quality plots.

• Extensive ecosystem of packages (unlike Julia)

3

Interacting with R

• You can interact with R in many ways:
• Through the command line
• In batch mode (i.e. running a script)
• Through an Integrated Development Interface (IDE)

• I strongly recommend using RStudio, which is the most
powerful IDE for R.

4

R is a functional programming language

• In R, functions are first-class citizens:
• They can be assigned to variables
• They can be passed as function arguments
• They can be returned by other functions

• Everything that happens in R is a function call.
• E.g. Control structures are implemented as functions too!

• Therefore, to become effective in R, learn to write functions

5

Every R object is a vector

• Even scalars are vectors of length 1
• There are two main types of vectors:

• Atomic vectors: each element is of the same primitive type
(e.g. numeric, boolean, character)

• Lists: elements can be of any type, even lists!

• Matrices and arrays are also vectors, but with extra structure.

A very common pattern in R is to apply functions to vectors (as
opposed to using for loops). A function that takes a vector as

input is called vectorized.

6

Example i

Create a vector
vect <- c(2, 6, 3, 5.5)

What is its mean?
Using for loops
n <- length(vect)
sum <- 0 # Initialize

for (i in 1:n) { # R is 1-indexed!
sum <- sum + vect[i]

}

7

Example ii

mean <- sum/n
mean

[1] 4.125

In R, use vectorized functions
whenever possible
mean(vect)

[1] 4.125

8

Main object types

9

Variables

• Variables are ways to assign values (or objects) to names (or
symbols).

• E.g. vect <- c(1,2,3,4)

• This allows us to write more robust and flexible code.
• Use meaningful names to make code human-readable.

• Try to use n.sample or sample_size or createMatrix,
instead of n or nn.

• Have a look at the Tidyverse style guide for R:
https://style.tidyverse.org/

• Descriptive names make it easier to design, debug, and
improve your code.

10

https://style.tidyverse.org/

Assignment Operator

• The are several ways of assigning a value to a variable.

These are all equivalent
x <- 10
10 -> x
x = 10
assign(”x”, 10)

• For readability of the code, the preferred option is <-.
• Although = also works, it is usually reserved for function
arguments.

11

Atomic vectors i

• Recall: An atomic vector is a sequence of values, all of the
same primitive type.

x <- c(0, 5, 12, 8)
x

[1] 0 5 12 8

• The c function (for concatenate) returns a vector made from
all the given arguments.

12

Atomic vectors ii

y <- c(3, 2)
c(x, y)

[1] 0 5 12 8 3 2

• If elements are not all of same type, R tries to coerce them.

c(1, 2.5, ”Stat”, FALSE)

[1] ”1” ”2.5” ”Stat” ”FALSE”

13

Atomic vectors iii

• R has a built-in function to create sequences.

seq(from = 1, to = 3, by = 0.5)

[1] 1.0 1.5 2.0 2.5 3.0

Equivalently
seq(1, 3, by = 0.5)

[1] 1.0 1.5 2.0 2.5 3.0

14

Atomic vectors iv

Decreasing sequences
seq(1, 0, by = -0.2)

[1] 1.0 0.8 0.6 0.4 0.2 0.0

• There is also a shorthand for sequences of consecutive
integers:

1:5

[1] 1 2 3 4 5

15

Atomic vectors v

1:(-2)

[1] 1 0 -1 -2

• Accessing one element of a vector:

x[2]

[1] 5

16

Atomic vectors vi

• Accessing more than one element:

x[c(1, 3)]

[1] 0 12

• Accessing all but some elements:

x[c(-2, -4)]

[1] 0 12

17

Atomic vectors vii

• Accessing can also be done with a boolean vector:

x_large <- x > 7
x_large

[1] FALSE FALSE TRUE TRUE

x[x_large]

[1] 12 8

18

Atomic vectors viii

• Or using the which function (returns the indices of the
elements of a boolean vector that are TRUE)

which(x_large)

[1] 3 4

x[which(x_large)]

[1] 12 8

19

Comparisons and Logical Operators i

• Comparisons are made like most other languages:

7 <= 5

[1] FALSE

7 != 5

[1] TRUE

20

Comparisons and Logical Operators ii

Even works with character values
”abc” < ”bca”

[1] TRUE

• Recall that = is an assignment operator. Equality is checked
with a double equal sign:

7 == 5

[1] FALSE

21

Comparisons and Logical Operators iii

• For vectors of length > 1, comparisons are actually done
component-wise:

y <- rep(10, times = 4) # rep for repeat
y

[1] 10 10 10 10

x < y

[1] TRUE TRUE FALSE TRUE

22

Comparisons and Logical Operators iv

• Because of recycling, this is equivalent to:

x < 10

[1] TRUE TRUE FALSE TRUE

• The basic logical operators are | (or) and & (and). They also
work component-wise:

(x > 3) & (x < 10)

[1] FALSE TRUE FALSE TRUE

23

Comparisons and Logical Operators v

(x < 3) | (x > 10)

[1] TRUE FALSE TRUE FALSE

24

Vector arithmetic

• Arithmetic operators work component-wise:

z <- 1:4
x + z

[1] 1 7 15 12

x * z

[1] 0 10 36 32

z / x

[1] Inf 0.40 0.25 0.50

25

Recycling

• Binary operators (arithmetic, comparison, logical) are applied
element-wise to vectors.

• R uses the concept of recycling when applying these
operators to vectors of different lengths:

• repeat the shorter vector enough times to obtain a new vector
of the same length as the longer vector

• apply the operator to the two longer vectors thus obtained
• if the length of the longer vector is not a multiple of the
length of the shorter vector, R returns a warning.

26

Arrays and Matrices i

• Arrays are tables made from elements of the same type, like
atomic vectors.

• You can create arrays from atomic vectors by specifying the
dimensions.

• Note: R is column-major, which means it fills the matrix
column by column (instead of by row)

A_mat <- matrix(1:4, nrow = 2, ncol = 2)
A_mat

27

Arrays and Matrices ii

[,1] [,2]
[1,] 1 3
[2,] 2 4

• If you prefer filling by row:

B_mat <- matrix(1:4, nrow = 2, ncol = 2, byrow = TRUE)
B_mat

[,1] [,2]
[1,] 1 2
[2,] 3 4

28

Arrays and Matrices iii

• Array arithmetic (+, *, etc.) is done component-wise:

A_mat * B_mat

[,1] [,2]
[1,] 1 6
[2,] 6 16

29

Accessing elements of arrays i

• Accessing elements of arrays can be done by proper indexing
of the array itself or by indexing the underlying vector:

A_mat[1, 2]

[1] 3

A_mat[3]

[1] 3

30

Accessing elements of arrays ii

• You can also select a full row or columns:

B_mat[, 2]

[1] 2 4

31

Basic matrix operations i

• Some basic operations: t, det, %*%.
• Matrix multiplication requires the dimension of the involved
matrices to match.

B_mat %*% t(A_mat)

[,1] [,2]
[1,] 7 10
[2,] 15 22

• R treats vectors as column-vectors or row-vectors, as needed.

32

Basic matrix operations ii

A_mat %*% c(2, 3)

[,1]
[1,] 11
[2,] 16

c(5, 1) %*% A_mat

[,1] [,2]
[1,] 7 19

33

Basic matrix operations iii

• Matrix inversion is done with solve:

solve(A_mat)

[,1] [,2]
[1,] -2 1.5
[2,] 1 -0.5

34

Lists i

• Unlike atomic vectors, lists are sequences of values, not
necessarily all of the same type.

course <- list(3150, ”Statistical Computing”,
FALSE, 3.0)

course

35

Lists ii

[[1]]
[1] 3150
##
[[2]]
[1] ”Statistical Computing”
##
[[3]]
[1] FALSE
##
[[4]]
[1] 3

36

Lists iii

• Lists are vectors, and they can be subsetted using [].

course[4]

[[1]]
[1] 3

• Note: the above is still a list! To extract the element, use
double brackets:

course[[4]]

37

Lists iv

[1] 3

• Use c to add elements to a list (just like atomic vectors).

c(”STAT”, course)

[[1]]
[1] ”STAT”
##
[[2]]
[1] 3150
##

38

Lists v

[[3]]
[1] ”Statistical Computing”
##
[[4]]
[1] FALSE
##
[[5]]
[1] 3

39

Names for lists i

• Very often, elements of a list will be given names.

names(course) <- c(”Number”, ”Title”,
”Lab”, ”Credit_hours”)

course

$Number
[1] 3150
##
$Title
[1] ”Statistical Computing”

40

Names for lists ii

##
$Lab
[1] FALSE
##
$Credit_hours
[1] 3

• There is a shortcut for using names with lists:

course[[”Title”]]

[1] ”Statistical Computing”

41

Names for lists iii

course$Title

[1] ”Statistical Computing”

• Lists can be created with names.

other_course <- list(Number = 4150,
Title = ”Bayesian Statistics”,
Lab = FALSE, Credit_hours = 3.0)

other_course

42

Names for lists iv

$Number
[1] 4150
##
$Title
[1] ”Bayesian Statistics”
##
$Lab
[1] FALSE
##
$Credit_hours
[1] 3

43

Names for lists v

• A named element can be added to a list.

course$Dept <- ”STAT”
course

$Number
[1] 3150
##
$Title
[1] ”Statistical Computing”
##
$Lab

44

Names for lists vi

[1] FALSE
##
$Credit_hours
[1] 3
##
$Dept
[1] ”STAT”

other_course[[”Dept”]] <- ”STAT”

45

Data Frames i

• A data frame is a list of vectors that are all of the same length.
Importantly, the vectors can be of different types.

• Data frames are how R models datasets:
• Columns are variables,
• Rows are units or subjects.

courses <- data.frame(Dept = c(”STAT”, ”STAT”),
Number = c(3150, 4150),
Title =c(”Statistical Computing”,

”Bayesian Statistics”),
Lab = c(FALSE, FALSE),
Credit_hours = c(3.0, 3.0))

46

Data Frames ii

courses

Dept Number Title Lab Credit_hours
1 STAT 3150 Statistical Computing FALSE 3
2 STAT 4150 Bayesian Statistics FALSE 3

• Elements of data frames can be accessed, like matrices, by
indices or names.

courses[2, ”Title”]

[1] ”Bayesian Statistics”

47

Data Frames iii

• The shortcut $ works with the columns of data frames:

courses$Lab

[1] FALSE FALSE

48

Control Structures

49

Conditional Statements i

• The function if is used to control which of two blocks of code
are executed.

• The typical syntax is:

if (condition) {
Block of code to be executed
when condition is TRUE

} else {
Another block of code to be executed
when condition is FALSE

}

50

Conditional Statements ii

• Braces are not necessary when a block contains only one line
of code, but it is good practice to use the above syntax.

• The else statement is not required.

51

Example

Sample 1 value from a standard normal
x <- rnorm(1)
if (x < 0) {
message(”The observation x is negative.”)

} else {
message(”The observation x is positive.”)

}

The observation x is negative.

52

Conditional Statements (cont’d) i

• It is also possible to have more than one else statement:

x <- rnorm(10)
loc_measure <- ”mid_point”

53

Conditional Statements (cont’d) ii

if (loc_measure == ”mean”) {
mean(x)

} else if (loc_measure == ”median”) {
median(x)

} else if (loc_measure == ”mid_point”) {
0.5*(min(x) + max(x))

} else {
stop(paste(”You have to choose between mean,”,

”median and mid_point.”))
}

54

Conditional Statements (cont’d) iii

[1] 0.4846854

• The above is referred to as a nested if structure.
• The switch function can also be used in the above setting:

55

Conditional Statements (cont’d) iv

loc_measure <- ”truncated_mean”
switch(loc_measure,

”mean” = mean(x),
”median” = median(x),
”mid_point” = 0.5*(min(x) + max(x)),
stop(paste(”You have to choose between mean,\n”,

”median and mid_point.”), call. = FALSE)
)

Error: You have to choose between mean,
median and mid_point.

56

for Loop i

• The for statement specifies that a certain operation should
be repeated a fixed number of times.

• The syntax is:

for (element in vector) {
Block of code to be repeated
once for each element of vector

}

57

Example

for (k in 3:0) {
message(k)
if (k == 0) message(”Blast off!”)

}

3

2

1

0

Blast off!

58

Exercise

Approximate a geometric sum using a finite number N of terms:

S =
∞∑

k=0

(1
2

)k

≈
N−1∑
k=0

(1
2

)k

.

59

Solution i

N <- 10
approx <- 0
for (k in 0:(N - 1)) {
update current approx by adding next term
approx <- approx + 2^{-k}

}
approx

[1] 1.998047

• Note: it is more efficient to use vectorized functions:

60

Solution ii

sum(0.5^(0:(N-1)))

[1] 1.998047

61

while Loop

• The while loop repeats an expression for as long as a
condition holds.

• The syntax is:

while (condition) {
Block of code to be repeated
as long as condition is TRUE

}

62

Example i

num_flips <- 0
flip <- ”tails”

while (flip == ”tails”) {
Flip a coin
flip <- sample(c(”tails”, ”heads”), size = 1)
num_flips <- num_flips + 1

}

63

Example ii

How many flips?
num_flips

[1] 1

64

Example i

• What if we want to approximate the geometric sum within
ϵ = 10−7 of the true value of S?

approx <- 0
current_err <- 2
k <- 0
while(current_err > 10^(-7)) {
approx <- approx + 2^(-k)
current_err <- 2 - approx
k <- k + 1

}

65

Example ii

How many terms?
k

[1] 25

66

Creating functions i

• Creating new functions is an important part of programming.
• This is done with the function function and through
assignment.

new_function <- function(arg1, arg2 = def_val) {
Block of code to be executed using the arguments
return(value)

}

• This creates a function named new_function that can then
be used like any other R function.

67

Creating functions ii

• The function has two arguments:

• arg1 is required
• arg2 has the default value def_val

• The function will return the output of the last statement,
unless it hits return (after which it exits).

68

Example i

• Consider the following piecewise linear function:

f(x) =

1 if x < −1 or x > 1,

−x if − 1 ≤ x < 0,

x if 0 ≤ x ≤ 1.

• In R, this can be defined as follows:

69

Example ii

fun <- function(x) {
if ((x >= -1) & (x < 0)) {
value <- -x

} else if ((x >= 0) & (x <= 1)) {
value <- x

} else value <- 1

return(value)
}

70

Example iii

c(fun(-3), fun(-0.3), fun(0.4), fun(1.5))

[1] 1.0 0.3 0.4 1.0

• Equivalently, we can define

71

Example iv

fun_cleaner <- function(x) {
if ((x >= -1) & (x < 0)) {

return(-x)
}
if ((x >= 0) & (x <= 1)) {

return(x)
}
return(1)

}

72

Example v

c(fun_cleaner(-3), fun_cleaner(-0.3),
fun_cleaner(0.4), fun_cleaner(1.5))

[1] 1.0 0.3 0.4 1.0

73

Exercise

• Implement the following, more general, function, where a > 0
is arbitrary:

fa(x) =

a if x < a, or x > a,

−x if − a ≤ x < 0,

x if 0 ≤ x ≤ a,

• Hint: Use a second argument to the function.

74

	Quick Introduction
	Main object types
	Control Structures

