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Lecture Objectives

• Recognize the relative importance of regression assumptions.
• Interpret residual plots to determine whether the
assumptions are likely to be met.

2



Motivation

• In the previous lecture, we talked about how to fit a linear
regression model in R, and how it relates to common
statistical procedures (e.g. t-test and ANOVA).

• But we haven’t talked about assumptions yet!
• I’ll introduce them in the next slides.

• Residual analysis allows us to assess whether the
assumptions are met and whether we should change our
model.

• We will focus on a graphical approach. In other courses, you
may see different approaches.
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Multiple Linear Regression i

• Recall: Y is an outcome variable, X1, . . . , Xp are covariates.
• The linear regression equation is

E(Y | X1, . . . , Xp) = β0 + β1X1 + · · · + βpXp.

• Some authors also write the following equation:

Y = β0 + β1X1 + · · · + βpXp + ϵ.

• Here, ϵ is a random variable with mean 0 and variance σ2.
• You can use either equation; I prefer the first one.
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Multiple Linear Regression ii

• In matrix notation, we have

E(Y | X) = βT X,

where

β = (β0, β1, . . . , βp),
X = (1, X1, . . . , Xp).
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Least-Squares Estimation

• Let Y1, . . . , Yn be a random sample of size n, and let
X1, . . . , Xn be the corresponding sample of covariates.

• We will write Y for the vector whose i-th element is Yi, and X
for the matrix whose i-th row is Xi.

• The Least-Squares estimate β̂ is given by

β̂ = (XTX)−1XTY.
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Fitted values and residuals i

• After we have estimated the regression coefficients
β0, β1, . . . , βp, we can compute fitted values and residuals.

• We will use the hat notation to indicate that a parameter has
been estimated:

• β0 is the (population) parameter.
• β̂0 is the estimate from linear regression.

• Now assume we have our estimates β̂0, β̂1, . . . , β̂p. For a
given observation in our dataset, we also have a set of
covariate values Xi1, . . . , Xip.
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Fitted values and residuals ii

• We get the i-th fitted value by plugging all these values in the
regression equation:

Ŷi = β̂0 + β̂1Xi1 + · · · + β̂pXip.

• In matrix notation:

Ŷ = (XTX)−1XTYX.

• We get the i-th residual by taking the difference between the
observed value Yi and the fitted value Ŷi:

êi = Yi − Ŷi.
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Fitted values and residuals iii

The fitted values and residuals can help us understand the fit of
our regression model.
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Assumptions of Linear Regression

Gelman, Hill and Vehtari (2020) list the assumptions of linear
regression in decreasing order of importance:

1. Validity (with respect to the research question).
2. Representativeness (of the data with respect to the
population).

3. Additivity and linearity.
4. Independence of errors.
5. Equal variance of errors.
6. Normality of errors.
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Additivity and linearity

• Main mathematical assumption:

E(Y | X1, . . . , Xp) = β0 + β1X1 + · · · + βpXp.

• Or in English:
• Changes in the conditional mean of Y should be additive and
linear.

• Note: Conditional mean = on average
• Life is probably nonlinear and non-additive…
• But it can still be a good approximation of the average
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Diagnostic plots

A powerful way of detecting violations of the assumptions is using
diagnostic plots.

1. For simple linear regression (i.e. only one covariate), plot
outcome against covariate.

2. Plot outcome against fitted values.
3. Plot residuals against fitted values and/or covariates.

Note: It is not recommended to plot outcome against residuals.
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Example i

• Dataset ironslag from the DAAG package contains 53
observations of iron measurements, obtained via two
methods: chemical and magnetic.

library(DAAG)

# Fit model
fit <- lm(magnetic ~ chemical, data = ironslag)
confint(fit)
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Example ii

## 2.5 % 97.5 %
## (Intercept) -3.7856893 6.590884
## chemical 0.6768355 1.154704

# Plot fitted linear trend
plot(ironslag$chemical,

ironslag$magnetic)
abline(a = coef(fit)[1],

b = coef(fit)[2])
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Example iii

10 15 20 25 30

10
15

20
25

30
35

40

ironslag$chemical

iro
ns

la
g$

m
ag

ne
tic

15



Example iv

# Fitted against residuals
plot(fitted(fit), residuals(fit))
abline(h = 0, lty = 2)
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Example v
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Example vi

• The residual plot shows evidence of heteroscedasticity and
violation of additivity/linearity.

• Conclusion: Some assumptions of the linear model are likely
violated.
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Exercise

Use the dataset mammals from the package MASS. Create a new
variable log_body by using a log transformation on the body size
measurement. Fit a linear model of brain by log_body.
Investigate whether the assumptions hold.
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Solution i

• Dataset contains body and brain size measurements for 62
mammals.

library(MASS)

dataset <- transform(mammals,
log_body = log(body))

# Fit model
fit <- lm(brain ~ log_body, data = dataset)
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Solution ii

confint(fit)

## 2.5 % 97.5 %
## (Intercept) -150.57636 286.1659
## log_body 96.27998 225.7135

# Plot fitted linear trend
plot(dataset$log_body,

dataset$brain)
abline(a = coef(fit)[1],

b = coef(fit)[2])
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Solution iii
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Solution iv

# Fitted against residuals
plot(fitted(fit), residuals(fit))
abline(h = 0, lty = 2)
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Solution v
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Solution vi

• There is clearly something wrong with our model…
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Transforming variables i

• In the previous example, the relationship between log_body
and brain started almost flat and then quickly jump up.

• This looked like an exponential relationship…

• If we log-transform the outcome, the relationship should look
more linear.

dataset <- transform(mammals,
log_body = log(body),
log_brain = log(brain))

# Fit model
fit2 <- lm(log_brain ~ log_body, data = dataset)
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Transforming variables ii

confint(fit2)

## 2.5 % 97.5 %
## (Intercept) 1.9426733 2.3269041
## log_body 0.6947503 0.8086215

# Plot fitted linear trend
plot(dataset$log_body,

dataset$log_brain)
abline(a = coef(fit2)[1],

b = coef(fit2)[2])
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Transforming variables iii
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Transforming variables iv

# Fitted against residuals
plot(fitted(fit2), residuals(fit2))
abline(h = 0, lty = 2)
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Transforming variables v
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Transforming variables vi

• The residual plot shows little evidence of heteroscedasticity
or any model violation.

• Conclusion: The assumptions of the linear model likely hold.
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Lifecycle of a regression model

1. Model building (i.e. choosing the variables in your model)
2. Model fitting
3. Understanding the fit (e.g. residual analysis)
4. Criticism

Important: This is typically an iterative process.
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Equal variance of errors i

• Equal variance (aka homoscedasticity) is actually a fairly
unimportant assumption.

• If the goal of the model is prediction, accounting for unequal
variance will improve accuracy.

• Unequal variance (aka heteroscedasticity) does not affect the
validity of the confidence intervals.

• However, accounting for unequal variance can lead to more
efficient inference (i.e. lower variance, narrower CIs).
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Equal variance of errors ii

• When is it not met? Unequal variance could simply be a
feature of the data, and it is common to have the variance
depend on covariates (e.g. higher income patients have more
variability in their diet).

• How to fix this? Weighted linear regression (beyond the scope
of this course) or Eicker–Huber–White standard errors (see
below).

• These can also help address dependent errors.
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Example i

• Let’s go back to our first example:

library(DAAG)
library(tidyverse)

# Fit model
fit <- lm(magnetic ~ chemical, data = ironslag)
confint(fit)

## 2.5 % 97.5 %
## (Intercept) -3.7856893 6.590884
## chemical 0.6768355 1.154704
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Example ii

• The Eicker–Huber–White standard errors replace the usual
standard errors used to construct the confidence intervals.

• But it doesn’t affect the estimates themselves!

library(lmtest)
library(sandwich)
coefci(fit, vcov. = vcovHC(fit))

## 2.5 % 97.5 %
## (Intercept) -3.6068737 6.412069
## chemical 0.6546812 1.176859
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Exercise

Compute robust confidence intervals for the regression model of
log_brain vs log_body. Compare with the usual confidence
intervals.
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Solution i

dataset <- mutate(mammals,
log_body = log(body),
log_brain = log(brain))

# Fit model
fit2 <- lm(log_brain ~ log_body, data = dataset)

confint(fit2)
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Solution ii

## 2.5 % 97.5 %
## (Intercept) 1.9426733 2.3269041
## log_body 0.6947503 0.8086215

coefci(fit2, vcov. = vcovHC(fit2))

## 2.5 % 97.5 %
## (Intercept) 1.9542558 2.315322
## log_body 0.7062298 0.797142
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Summary

• Residual analysis allows us to evaluate the fit of our model.
• How well does the model explain our dataset?

• The most important statistical assumption is additivity and
linearity, i.e. that the regression equation holds.

• If it doesn’t seem to hold, it means we need to change the
regression model.

• Transform variables.
• Add more covariates.

• Equal variance is not as important.
• Non-normality of the errors is rarely a problem.
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