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Learning Outcomes

• Understand how regression relates to statistical inference.
• Recognize the relative importance of regression assumptions.
• Be able to assess evidence that an assumption is likely not
met, and how to refine a regression model accordingly.
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Statistical Inference

Gelman, Hill and Vehtari (2020) describe the three main challenges
of statistical inference:

1. Generalizing from sample to population.
2. Generalizing from treatment to control group.
3. Generalizing from observed measurements to the underlying
constructs of interest.
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Regression and Inference

• Regression allows us to study how average values of an
outcome variable vary across individuals. Each individual is
defined by a set of covariates.

• Applications:
• Prediction
• Exploring associations
• Adjusting for confounders
• Causal inference
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Lifecycle of a regression model

1. Model building
2. Model fitting
3. Understanding the fit
4. Criticism
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Linear Regression
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Recall: Linear model

• Y is an outcome variable, X1, . . . , Xp are covariates.

Y = β0 + β1X1 + · · · + βpXp + error.

• Here, error is a random variable with mean 0 and variance σ2,
so we can also write

E(Y | X1, . . . , Xp) = β0 + β1X1 + · · · + βpXp.

• The coefficients βi represent comparisons of means for
different values of the covariates (i.e. for different individuals).
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Assumptions

Gelman, Hill and Vehtari (2020) list the assumptions of linear
regression in decreasing order of importance:

1. Validity (with respect to the research question).
2. Representativeness (of the data with respect to the
population).

3. Additivity and linearity.
4. Independence of errors.
5. Equal variance of errors.
6. Normality of errors.
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Validity and Representativeness i

• The most important assumptions of linear regression are
non-mathematical.

• They are entirely based on domain knowledge

• Validity
• Outcome measure should reflect question of interest
• Relevant predictors/risk factors should be included
• Model should generalize to patients to which results will be
applied

• Representativeness
• Data can be used to make inference about a larger population.
• Including more covariates into model can help bridge the
“representativeness” gap between data and population.
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Validity and Representativeness ii

• How to fix this? The solution is often to change the model.
• Validity: Measurement error models.
• Representativeness: IPT weights, selection models.
• When all else fails, you may have to narrow the scope of your
research question (e.g. more descriptive than causal).
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Additivity and linearity

• Main mathematical assumption:

E(Y | X1, . . . , Xp) = β0 + β1X1 + · · · + βpXp.

• Or in English:
• Changes in the conditional mean of Y should be additive and
linear.

• Note: Conditional mean = on average
• Life is probably nonlinear and non-additive…
• But it can still be a good approximation of the average

11



Diagnostic plots

1. For simple linear regression (i.e. only one covariate), plot
outcome against covariate.

2. Plot outcome against fitted values.
3. Plot residuals against fitted values and/or covariates.

Note: It is not recommended to plot outcome against residuals.
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Outcome vs Covariate i

• This is the simplest case, because we can actually visualize
the relationship.

• But it only works with a single covariate.

• Or two, if one is categorical

• We are looking for evidence that we could fit a line through
point cloud.

• Or perhaps we need to fit a quadratic term, etc.
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Outcome vs Covariate ii
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Outcome vs Covariate iii
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Outcome vs Fitted values i

• Recall: the fitted values are estimates of the conditional mean
of the outcome

• Outcome variable should be randomly distributed around its
conditional mean.

• Therefore, we expect outcome vs. fitted should follow
diagonal.

• Otherwise, part of the variation is not explained (e.g. because
of missing covariate).
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Outcome vs Fitted values ii
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Outcome vs Fitted values iii
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Residuals vs Fitted values/Covariate i

• Recall: the residuals are the difference between the outcome
and the fitted values.

• They should be independent of covariate and fitted values

• Therefore, we expect residuals vs fitted values/covariate to
follow a horizontal line.

• Otherwise, part of the variation is not explained (e.g. because
of missing covariate).
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Residuals vs Fitted values/Covariate ii
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Residuals vs Fitted values/Covariate iii
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How to fix this?

• Transform outcome variable.
• Eg. Using logarithms, multiplicative effects become additive.
• Note: It changes interpretation of regression coefficients.

• Transform covariates.
• Note: It changes interpretation of regression coefficients.

• Add quadratic term or splines to model nonlinear trends.
• Note: If the same variable appears in multiple terms
(e.g. linear and quadratic term), you can no longer vary one
while keeping the other fixed.

• Add interaction term.
• Note: It changes interpretation of regression coefficients.
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Example i

• We will use data on Forced Expiratory Volume (FEV) in children
age 3 to 19 from East Boston recorded during the 1970s.

• Can be downloaded from http:
//biostat.mc.vanderbilt.edu/wiki/Main/DataSets

• The dataset contains information on age, height, sex, and
smoking status.

• Outcome: FEV
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Example ii

# Import dataset into R
data_fev <- read.csv(”FEV.csv”)

# Explore data
boxplot(fev ~ sex, data = data_fev)
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Example iii
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Example iv

boxplot(fev ~ smoke, data = data_fev)
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Example v
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Example vi

# Note: Use 'with' instead of 'attach'
with(data_fev, plot(age, fev))
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Example vii
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Example viii

with(data_fev, plot(height, fev))
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Example ix
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Example x

# Fit linear model
model <- lm(fev ~ smoke + sex + age + height,

data = data_fev)
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Example xi

# Output nice table
knitr::kable(broom::tidy(model),

digits = 2)

term estimate std.error statistic p.value

(Intercept) -4.54 0.23 -19.58 0.00
smokenon-current smoker 0.09 0.06 1.47 0.14
sexmale 0.16 0.03 4.73 0.00
age 0.07 0.01 6.90 0.00
height 0.10 0.00 21.90 0.00
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Example xii

# Plot outcome vs fitted values
plot(fitted(model), data_fev$fev)
# Add diagonal line
abline(a = 0, b = 1)
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Example xiii
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Example xiv

# Can also colour points according to smoking status
colour <- ifelse(data_fev$smoke == ”current smoker”,

”red”, ”black”)
plot(fitted(model), data_fev$fev,

col = colour, pch = 20)
# Add diagonal line
abline(a = 0, b = 1)
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Example xv
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Example xvi

# Plot residuals vs fitted values
plot(fitted(model), resid(model))
# Add horizontal line
abline(h = 0)
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Example xvii
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Example xviii

# Can also add a nonlinear smoother
plot(fitted(model), resid(model))
abline(h = 0)
# We will use LOWESS
lines(lowess(fitted(model), resid(model)),

col = ”blue”)
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Example xix
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Example xx

# Plot residuals vs age
plot(data_fev$age, resid(model),

col = colour, pch = 20)
abline(h = 0)
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Example xxi
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Example xxii

# Plot residuals vs height
plot(data_fev$height, resid(model),

col = colour, pch = 20)
abline(h = 0)
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Example xxiii
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Interpretation of coefficients i

• Transformations change the interpretation of the coefficients.
• Let’s say we have a linear regression model where the
outcome is earnings (in 1000$) and the covariates are height
(in inches) and sex:

Earnings ∼ −26 + 0.6Height + 10.6Male.

• Interpretation: On average, a person one inch taller than
another person of the same sex earns 600$ more.

• Alternative model: the outcome is earnings (in 1000$) and the
covariates are logarithm of height and sex:

Earnings ∼ −162 + 42.7logHeight + 10.7Male.
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Interpretation of coefficients ii

• Interpretation: We need to do a bit of algebra.

E(Earnings | Height = x) = −162 + 42.7 log(x)
E(Earnings | Height = x + 1) = −162 + 42.7 log(x + 1)

• Therefore, the difference in average earnings when a person is
one inch taller is given by

(−162 + 42.7 log(x + 1)) − (−162 + 42.7 log(x))

= 42.7 log
(

x + 1
x

)
.

• In particular, it depends on x, the baseline height!
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Interpretation of coefficients iii

• This is why we instead use multiplicative changes when using
covariates on the logarithmic scale.

• Let’s compare two people, with one 10% taller than the other
one:

E(Earnings | Height = x) = −162 + 42.7 log(x)
E(Earnings | Height = 1.1x) = −162 + 42.7 log(1.1x)

• Therefore, the difference in average earnings when a person is
10% taller is about 4070$:

(−162 + 42.7 log(1.1x)) − (−162 + 42.7 log(x))

= 42.7 log
(1.1x

x

)
= 42.7 log (1.1) ≈ 4070$.
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Interpretation of coefficients iv

• Alternative model: the outcome is earnings (on the log scale)
and the covariates are height and sex:

log − Earnings ∼ 8.0 + 0.02Height + 0.4Male.

• Interpretation: On average, a person one inch taller than
another person of the same sex earns 0.02 log-dollars more.

• We would like to interpret this on the original scale, but the
logarithm of the average is not equal to the average of the
values on the logarithmic scale.

• However, if log-earnings are approximately symmetric, we
know that mean = median.
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Interpretation of coefficients v

• And the median is preserved under the logarithm!
• Remember: Difference on the log scale is a ratio on the
original scale.

• Interpretation 2: Since exp(0.02) = 1.02, the median income
of a person one inch taller than another person of the same
sex is 2% higher.
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Independence of errors

• Independence of the errors is important when performing
hypothesis testing and calculating confidence intervals.

• With dependent data, tests are too optimistic and CIs are too
narrow.

• On the other hand, the effect on the coefficient estimates
should be minimal.

• When is it not met? The main source of dependent data is
clustered or grouped (e.g. patients in a hospital, weather
sensors in a province).

• How to fix this? Use mixed models or generalized estimating
equations. Or add clustering variable into the model.
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Diagnostic i

• Dependence between the errors is usually driven by time
dependence (i.e. order in which the observations were taken),
spatial dependence, or clustering.

• Diagnostic: Plot residuals against any of these variables.
Departure from a horizontal trend is evidence of correlation.

• Tip: Use boxplots when clustering variable is discrete.
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Diagnostic ii
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Example i

# Residuals vs age
plot(data_fev$age, resid(model))
abline(h = 0)
lines(lowess(data_fev$age, resid(model)),

col = ”blue”)
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Example ii
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Example iii

# Residuals vs height
plot(data_fev$height, resid(model))
abline(h = 0)
lines(lowess(data_fev$height, resid(model)),

col = ”blue”)
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Example iv
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Equal variance of errors i

• Equal variance (aka homoscedasticity) is actually a fairly
unimportant assumption.

• If the goal of the model is prediction, accounting for unequal
variance will improve accuracy.

• Unequal variance (aka heteroscedasticity) does not affect the
frequentist properties of the inference.

• Hypothesis tests are valid, and so are the confidence intervals.

• However, accounting for unequal variance can lead to more
efficient inference (i.e. lower variance, narrower CIs).
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Equal variance of errors ii

• When is it not met? Unequal variance could simply be a
feature of the data, and it is common to have the variance
depend on covariates (e.g. higher income patients have more
variability in their diet).

• How to fix this? Weighted linear regression or
Eicker–Huber–White standard errors.
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Diagnostic i

• One way to see evidence of unequal variance is to plot the
residuals against the fitted values.

• Equal variance means residuals should randomly fall within a
band around the horizontal line y = 0.

• If there is evidence of heteroscedasticity, you can try to find
the source by plotting residuals against individual covariates.
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Diagnostic ii
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Example i

# Recall: FEV data
model <- lm(fev ~ smoke + sex + age + height,

data = data_fev)
# Plot residuals vs fitted
plot(fitted(model), resid(model),

xlab = ”Fitted values”, ylab = ”Residuals”)
abline(h = 0)
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Example ii
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Example iii

• There is evidence of heteroscedasticity.
• Let’s look at the Eicker–Huber–White standard errors.

• Note: For Stata, use the option robust of the regress
procedure.

# Default standard errors
knitr::kable(subset(broom::tidy(model),

select = c(”term”, ”estimate”,
”std.error”)),

digits = 3)

64



Example iv

term estimate std.error

(Intercept) -4.544 0.232
smokenon-current smoker 0.087 0.059
sexmale 0.157 0.033
age 0.066 0.009
height 0.104 0.005
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Example v

# EHW standard errors
vcov <- sandwich::vcovHC(model)
knitr::kable(cbind(coef(model),

sqrt(diag(vcov))),
digits = 3)

(Intercept) -4.544 0.258
smokenon-current smoker 0.087 0.078
sexmale 0.157 0.032
age 0.066 0.010
height 0.104 0.005
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Example vi

Estim. Std. CI Robust CI

(Intercept) -4.544 (-5, -4.089) (-5.05, -4.039)
smokenon-current smoker 0.087 (-0.029, 0.204) (-0.065, 0.24)
sexmale 0.157 (0.092, 0.222) (0.094, 0.22)
age 0.066 (0.047, 0.084) (0.045, 0.086)
height 0.104 (0.095, 0.114) (0.094, 0.114)
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Normality of errors

• Normality of the errors is the least important assumption.
• Frankly, its purpose is to make the math easier.

• Non-normality is only important for prediction.
• It does not affect inference.

• When is it not met? Pretty much all the time!
• How to fix this? Use prediction intervals based on more
appropriate distribution (e.g. t distribution).
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Diagnostic i

• One way to diagnose non-normality is to look at QQ-plots.
• We know the mean of the residuals is zero, and we can
estimate its variance σ̂2.

• We can compare the quantiles of the residuals with those of a
normal distribution N(0, σ̂2).

• It is not recommended to test the hypothesis of normality.
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Diagnostic ii
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Example i

# Evidence of heavier tails
qqnorm(resid(model))
qqline(resid(model))
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Example ii
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Other considerations i

• R2 measures how much variation in the outcome variable is
explained by the model.

• What constitutes a good R2 is highly dependent on the
problem.

• Not a good metric for assessing model fit.
• Never use for model selection (it is inherently biased towards
complex models)

• High correlation between covariates can lead to large
standard errors and wide confidence intervals.

• This is known as multicollinearity.
• It is measured using kappa (aka condition number) or
variance inflation factor.
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Other considerations ii

• It can be fixed by removing/combining/transforming some
covariates.

• There is plethora of influence measures (e.g. Leverage values,
Cook’s distance).

• These measures can be helpful to uncover outliers.
• Understanding why an observation is an outlier can be helpful
in refining your model (especially if “being an outlier” is
correlated with other variables).

• However, none of these measures are fail-proof; they are
helpful diagnostics.
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Example i

# R2 values
summary(model)$r.squared

## [1] 0.7753614

summary(model)$adj.r.squared

## [1] 0.7739769

75



Example ii

# Evaluate Multicollinearity----
# Variance Inflation Factors
car::vif(model)

## smoke sex age height
## 1.209564 1.060228 3.019010 2.829728
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Example iii

# Cook's D plot----
# identify D values > 4/(n-p-1)
n <- nrow(data_fev)
p <- length(coef(model)) - 1
cutoff <- 4/(n - p - 1)
plot(model, which = 4,

cook.levels = cutoff)
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Example iv
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Example v

# Look at raw data
data_fev[c(2, 624, 648),]

## id age fev height sex smoke
## 2 451 8 1.724 67.5 female non-current smoker
## 624 25941 15 5.793 69.0 male non-current smoker
## 648 71141 17 5.638 70.0 male non-current smoker
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Example vi

with(data_fev, plot(height, fev))
# Colour outliers in red
with(data_fev[c(2, 624, 648),],

points(height, fev, col = ”red”, pch = 20))
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Example vii
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Discussion and Summary i

• We found evidence that additivity/linearity is not met.
• Residual vs fitted plot, but also residual vs height.
• Given our data visualizations, it is likely that relationship
between FEV and height is nonlinear.

• We could address this using a logarithmic transformation or
splines.

• We found evidence of heteroscedasticity.
• Residual vs fitted values; higher variance with larger fitted
values.

• We computed robust standard errors but saw no major
change in our inference.
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Discussion and Summary ii

• We found evidence of a few outliers.
• But after closer look at the raw data, they do not seem like
implausible values.

• Model checking is an iterative process.
• It is also more an art than a science.

• In particular, it is easier to find evidence against than
evidence for.

• Diagnostic plots are preferable to hypothesis tests.
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Logistic Regression
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Recall: Logistic regression

• Y is a binary outcome variable (i.e. Y = 0 or Y = 1).

logit (E(Y | X1, . . . , Xp)) = β0 + β1X1 + · · · + βpXp.

• Recall: logit(t) = log(t/(1 − t)).
• The coefficients βi represent comparisons of log odds for
different values of the covariates (i.e. for different individuals).
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Assumptions

Logistic regression has less assumptions than linear regression.

1. Validity (with respect to the research question).
2. Representativeness (of the data with respect to the
population).

3. Additivity and linearity.
4. (Conditional) Independence of the outcomes.

Note: There is only one possible distribution for binary outcomes,
i.e. Bernoulli. As a consequence, we always have heteroscedasticity.
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Diagnostic plots i

• Diagnostic plots are trickier with logistic regression because
the data is discrete.

• And therefore the residuals are also discrete.

• One useful solution: bin the outcomes/residuals.
• Bin observations with similar fitted values.
• Take the average of residuals and fitted values.
• Plot the averages against one another.

• As residual plots in linear regression, we are looking for
random pattern around horizontal line.

• Note: There is a balance between enough bins to see patterns
and enough observations by bins to have stable averages.
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Example i

• We will use data on Duchenne Muscular Dystrophy (DMD).
• Can be downloaded from http:
//biostat.mc.vanderbilt.edu/wiki/Main/DataSets

• Goal of the study was to develop a screening program for
female relatives of boys with DMD.

• Outcome: Carrier status
• Covariates: serum markers: creatine kinase (ck), hemopexin
(h), pyruvate kinase (pk) and lactate dehydroginase (ld).
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Example ii

# Import dataset into R
data_dmd <- read.csv(”DMD.csv”)
# Remove rows with missing values
data_dmd <- na.omit(data_dmd)

# Explore data
par(mfrow = c(2, 2))
boxplot(ck ~ carrier, data = data_dmd)
boxplot(h ~ carrier, data = data_dmd)
boxplot(pk ~ carrier, data = data_dmd)
boxplot(ld ~ carrier, data = data_dmd)
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Example iii
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Example iv

# Pairs plot----
# Useful for pairwise comparisons
with(data_dmd, pairs(cbind(ck, h, pk, ld)))
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Example v
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Example vi

model <- glm(carrier ~ ck + h, data = data_dmd,
family = ”binomial”)

confint(model)

## 2.5 % 97.5 %
## (Intercept) -20.76823776 -10.43024757
## ck 0.04058575 0.08519017
## h 0.07813791 0.17837069
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Example vii

# Plot residuals and probabilities (no binning)
plot(fitted(model), resid(model))
abline(h = 0)
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Example viii
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Example ix

# We will use the 'performance' package
library(performance)

# By default: residuals vs fitted probs
# sqrt(n) bins (~14 bins)
binned_residuals(model)

## Warning: Probably bad model fit. Only about
71% of the residuals are inside the error bounds.
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Example x
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Example xi

# Use 'term' to plot against covariate
binned_residuals(model, term = ”ck”)

## Ok: About 100% of the residuals are inside the
error bounds.
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Example xii
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Example xiii

binned_residuals(model, term = ”h”)

## Warning: About 93% of the residuals are inside
the error bounds (~95% or higher would be good).
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Example xiv
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Example xv

• We have evidence of poor model fit (from binned residuals vs
fitted probabilities).

• But the evidence is weak.

• It may be driven by non-linearity of the effect of h on the
log-odds.

• Or it could be driven by a missing covariate.
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Other considerations i

• Calibration: Are the estimated probabilities close to empirical
probabilities?

• Hosmer-Lemeshow, Brier score

• Discrimination: Are cases more likely to be given large scores
(or large probabilities) than non-cases?

• Area under the ROC curve (AUC), Percentage of Correct
Predictions (PCP)

• Note: the AUC is not a very sensitive measure of model
performance.
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Other considerations ii

performance_hosmer(model)

## # Hosmer-Lemeshow Goodness-of-Fit Test
##
## Chi-squared: 3.305
## df: 8
## p-value: 0.914

# Quadratic score = Brier score
performance_score(model)
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Other considerations iii

## # Proper Scoring Rules
##
## logarithmic: -Inf
## quadratic: 8.1783
## spherical: 0.0280

performance_roc(model)

## AUC: 92.73%

performance_pcp(model)
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Other considerations iv

## # Percentage of Correct Predictions from
Logistic Regression Model
##
## Full model: 81.53% [76.07% - 86.99%]
## Null model: 54.78% [47.78% - 61.79%]
##
## # Likelihood-Ratio-Test
##
## Chi-squared: 133.685
## p-value: 0.000
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