Reduced-Rank Singular Value Decomposition for Dimension Reduction with High-Dimensional Data

Maxime Turgeon
June 12th, 2017

McGill University
Department of Epidemiology, Biostatistics, and Occupational Health
Acknowledgements

- Stepan Grinek (BC Cancer Agency)
- Celia Greenwood (McGill University)
- Aurélie Labbe (HEC Montréal)
• Modern genomics bring an abundance of high-dimensional, correlated measurements \mathbf{Y}.
• We are interested in describing the relationship between such a \mathbf{Y} and a set of covariates \mathbf{X}.
• Our approach is to **summarise** this relationship using the largest root λ of a *double Wishart problem*:

\[
\det (\mathbf{A} - \lambda(\mathbf{A} + \mathbf{B})) = 0.
\]
There are many well-known examples:

- Multivariate Analysis of Variance (MANOVA);
- Canonical Correlation Analysis (CCA);
- Testing for independence of two multivariate samples;
- Testing for the equality of covariance matrices of two independent samples from multivariate normal distributions;
- Principal Component of Explained Variance (PCEV).
In this work:

1. We explain how to solve the double Wishart problem in a high-dimensional setting.

2. We provide a heuristic for assessing the significance of the largest root of the determinantal equation.

In what follows, we illustrate this approach using PCEV, but it is applicable to any double Wishart problem (e.g. CCA).
Methods
We assume a linear relationship:

\[Y = \beta^T X + \varepsilon. \]

The total variance of the outcome can then be decomposed as

\[\text{Var}(Y) = \text{Var}(\beta^T X) + \text{Var}(\varepsilon) = V_M + V_R. \]
The PCEV framework seeks a linear combination $w^T Y$ such that the proportion of variance explained by X is maximised; this proportion is defined as the following Rayleigh quotient:

$$h(w) = \frac{w^T V_M w}{w^T (V_M + V_R) w}.$$

For the corresponding Wishart problem, we have

$$A = V_M, B = V_R.$$

We also have $\lambda = \max_w h(w)$.
From the theory of SVD, we know there exists an orthogonal matrix T such that

$$D := T^T (V_R + V_M) T$$

is diagonal.

When $p > n$, the diagonal matrix D is singular, with rank $r < p$.

Solution: Focus only on the nonzero diagonal elements.
Reduced-Rank SVD

Let \(\tilde{T} = T_{[r]} D_{[r]}^{-1/2} \). Therefore we get:

\[
\tilde{T}^T (V_R + V_M) \tilde{T} = I_r.
\]

Similarly, we can diagonalise \(\tilde{T}^T V_M \tilde{T} \) via an orthogonal transformation \(S \):

\[
S^T \left(\tilde{T}^T V_M \tilde{T} \right) S = \Lambda.
\]

The largest root \(\lambda \) of the double Wishart problem is the largest element on the diagonal of \(\Lambda \).

Note: the vector \(w \) maximising the proportion of variance \(h(w) \) is the column of \(\tilde{T} S \) corresponding to the largest root.
There is evidence in the literature that the null distribution of the largest root λ should be related to the **Tracy-Widom distribution**.

- Johnstone: $(\log(\lambda) - \mu)/\sigma \to TW$ when $p < n$.
- **Turgeon et al.**: The null distribution of λ is asymptotically the same as the largest root of a scaled Wishart.
 - The null distribution of the largest root of a Wishart is also related to TW.
- More generally, random matrix theory suggests that the Tracy-widom distribution is key in central-limit-like theorem for random matrices.
Estimate the null distribution

1. Perform a small number of permutations (\(\sim 25\)) on the rows of \(Y\);
2. For each permutation, compute the largest root statistic.
3. Fit a location-scale variant of the Tracy-Widom distribution.

Numerical investigations support this approach for computing p-values. The main advantage over a traditional permutation strategy is the computation time.
Simulations
Simulation setting

- We compared 4 different approaches:
 - PCEV with reduced-rank SVD
 - Lasso
 - Elastic net
 - Principal Component Regression

- We simulated $p = 500, 750, \ldots, 2000$ outcomes, 100 observations, one binary covariate.

- Covariance structure is block-diagonal:
 - 10 uncorrelated blocks of equal size
 - Within block is autoregressive (with parameter ρ) with baseline correlation α

- 25% of the outcomes in each block are associated with the covariate, with a fix effect size of 0.333.
Simulation results: Power analysis

Method
- Enet
- Lasso
- PCEV
- PCR

<table>
<thead>
<tr>
<th>Method</th>
<th>Enet</th>
<th>Lasso</th>
<th>PCEV</th>
<th>PCR</th>
</tr>
</thead>
</table>

- **alpha: 0**
- **rho: 0**

- **alpha: 0.2**
- **rho: 0**

- **alpha: 0.5**
- **rho: 0.2**

- **alpha: 0.7**
- **rho: 0.5**

- **alpha: 1.0**
- **rho: 0.7**

power vs. p

- **500**
- **1000**
- **1500**
- **2000**

Method
- **Enet**
- **Lasso**
- **PCEV**
- **PCR**

alpha: 0
- **rho: 0**

alpha: 0.2
- **rho: 0.2**

alpha: 0.5
- **rho: 0.5**

alpha: 0.7
- **rho: 0.7**

alpha: 1.0
- **rho: 0.7**
Data analysis
- DNA methylation measured with Illumina 450k on 120 cell-separated samples
- We focus on Monocytes only.
- 18 controls; 35 Rheumatoid arthritis, 24 Lupus, 43 Scleroderma
- We group CpGs by KEGG pathways
 - On average about 1500 CpGs per pathway; max of 21,800.
- We compare PCEV to Lasso and Elastic-net.
Results

Penalty

PCEV p-value (−log10 scale)

Prop. selected CpGs

Penalty

Enet

Lasso

0.00

0.25

0.50

0.75

1.00

0

2

4

6

0.00

0.25

0.50

0.75

1.00

0 2 4 6

PCEV p−value (−log10 scale)

Prop. selected CpGs
Penalty • Enet • Lasso
Results

<table>
<thead>
<tr>
<th>Pathway</th>
<th>PCEV pvalue</th>
<th>Lasso Prop.</th>
<th>Enet Prop.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vitamin B6 metabolism</td>
<td>$< 3.4 \times 10^{-8}$</td>
<td>0.12</td>
<td>0.32</td>
</tr>
<tr>
<td>Primary bile acid biosynthesis</td>
<td>$< 3.4 \times 10^{-8}$</td>
<td>0.10</td>
<td>0.28</td>
</tr>
<tr>
<td>Fatty acid biosynthesis</td>
<td>$< 3.4 \times 10^{-8}$</td>
<td>0.07</td>
<td>0.25</td>
</tr>
<tr>
<td>Ascorbate and aldarate metabolism</td>
<td>$< 3.4 \times 10^{-8}$</td>
<td>0.10</td>
<td>0.24</td>
</tr>
<tr>
<td>Steroid biosynthesis</td>
<td>$< 3.4 \times 10^{-8}$</td>
<td>0.08</td>
<td>0.22</td>
</tr>
<tr>
<td>Glycosphingolipid biosynthesis</td>
<td>$< 3.4 \times 10^{-8}$</td>
<td>0.06</td>
<td>0.21</td>
</tr>
<tr>
<td>Histidine metabolism</td>
<td>$< 3.4 \times 10^{-8}$</td>
<td>0.07</td>
<td>0.20</td>
</tr>
<tr>
<td>Thiamine metabolism</td>
<td>$< 3.4 \times 10^{-8}$</td>
<td>0.10</td>
<td>0.19</td>
</tr>
<tr>
<td>Folate biosynthesis</td>
<td>$< 3.4 \times 10^{-8}$</td>
<td>0.10</td>
<td>0.19</td>
</tr>
<tr>
<td>Other types of O-glycan biosynthesis</td>
<td>$< 3.4 \times 10^{-8}$</td>
<td>0.09</td>
<td>0.19</td>
</tr>
</tbody>
</table>
Conclusion

- Data summary is an important feature in data analysis, and this can be achieved using dimension reduction techniques.
- In a high-dimensional setting, estimation and inference are more challenging.
 - Estimation: Reduced-rank SVD;
 - Inference: Fitted location-scale Tracy-Widom.
- Our approach is computationally simple and provides good power.
- Simulations and data analyses confirm its advantage over a more traditional approach using PCA, as well as other high-dimensional approaches such as Lasso and Elastic-net regression.
Questions or comments?

For more information and updates, visit maxturgeon.ca.