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Motivation

• Modern genomics and neuroimaging bring an abundance of

high-dimensional, correlated measurements X.

• We are interested in predicting a clinical outcome Y based on
the observed covariates X.

• However, the collected data typically contains thousands of

covariates, whereas the sample size is at most a few hundreds.

• We would also want to capture the potentially complex,

nonlinear association between X and Y, and between the

covariates themselves.
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Motivation

• With a low to medium signal-to-noise ratio, the information

contained in the data should be used sparingly.

• Moreover, from a clinical perspective, we need to account for
the possibility of similar clinical profiles leading to different
outcomes.

• We want prediction, not classification.
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Proposed approach

This work investigates the properties of the following approach:

• Let X be p-dimensional and Y binary.

• Using nonlinear dimension reduction methods, extract K

components L̂1, . . . , L̂K .

• Predict Y using a logistic regression model of the form

logit
(
E
(
Y | L̂1, . . . , L̂K

))
= β0 +

K∑
i=1

βi L̂i .
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Nonlinear dimension reduction



General principle

• In PCA and ICA, we learn a linear transformation from the

latent structure to the observed variables (and back).

• On the other hand, nonlinear dimension reduction (NLDR)
methods try to learn the manifold underlying the latent
structure.

• NLDR methods are non-generative, i.e. they do not learn the

transformation.

• The main approach: preserve local structures in the data.
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Multidimensional Scaling

• Main principle: Manifolds can be described by pairwise

distances.

• Let D = (dij) be the matrix of pairwise distances for the

observed values X1, . . . ,Xn.

• The goal is now to find L1, . . .Ln in a lower dimensional space

such that ∑
i 6=j

(dij − ‖Li − Lj‖)2
1/2

is minimized.

• The objective function can also be weighted in a such a way

that preserving small distances is prioritized.
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Other methods

Other methods that are considered in this work:

• Isomap;

• Laplace Eigenmaps (SE);

• kernel PCA;

• Locally Linear Embedding (LLE);

• t-distributed Stochastic Embedding (t-SNE).

All methods are implemented in the Python module

scikit-learn.
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Simulations



General framework

X1, . . . ,Xp
//Y

L1, . . . , LK

cc ==
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Performance metrics

We want to measure two key properties:

1. Calibration: using the Brier score (lower is better);

2. Discrimination: using the AUROC (higher is better).
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1. Swiss roll

• We first generate two uniform variables L1 ∼ U(0, 10) and

L2 ∼ U(−1, 1).

• We then generate a binary outcome Y :

logit (E (Y | L1, L2)) = −5 + L1 − L2.

• Finally, we generate three covariates X1,X2,X3:

(X1,X2,X3) = (L1 cos(L1), L2, L1 sin(L1)).

• We fix n = 500 and repeat the simulation B = 250 times.
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1. Swiss roll

12/21



1. Swiss roll

We compared 10 approaches:

1. Oracle: logistic regression with L1, L2 (i.e. the true model);

2. Baseline: logistic regression with X1,X2,X3;

3. Classical linear methods: PCA, ICA;

4. Manifold learning methods: kernel PCA, Multidimensional

scaling (MDS), Isomap, Locally Linear Embedding (LLE),

Spectral Embedding (SE), and t-distributed Stochastic

Neighbour Embedding (tSNE).
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1. Swiss roll–Results
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2. Random quadratic forms

• We first generate K latent variables L1, . . . , LK .

• All p covariates are generated as random quadratic forms of

the latent variables.

1. Select a random subset L1, . . . , Lk of the K latent variables.

• E.g. L1 and L4.

2. Form all possible quadratic combinations of the selected
variables.

• E.g. L21, L1L4, L24.

3. Sample coefficients from standard normal and sum all terms.

• E.g. Xi = −0.5L21 − 0.1L1L4 + 0.7L24.
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2. Random quadratic forms

• The association between Y and L1, . . . , L5 is defined via

logit (E (Y | L1, . . . , L5)) =
5∑

i=1

βiLi ,

where

βi =
(−1)i2√

5
.

• The sample size varies as n = 100, 150, 250, 300.

• The distribution of the covariates:

• Standard normal;

• Folded standard normal;

• Exponential with mean 1.

• The simulation was repeated B = 50 times.
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2. Random quadratic forms

We compared 12 approaches:

1. Oracle: logistic regression with only the first five covariates

(i.e. the true model);

2. Baseline: logistic regression with all p variables;

3. Lasso regression using all p variables;

4. Elastic-net regression using all p variables;

5. Classical methods and nonlinear extensions: PCA, ICA,

kernel PCA, and Multidimensional scaling (MDS);

6. Manifold learning methods: Isomap, Locally Linear

Embedding (LLE), Spectral Embedding (SE), and

t-distributed Stochastic Neighbour Embedding (tSNE).
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2. Random quadratic forms–Results
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Discussion



Summary

• The Swiss roll example shows that manifold learning methods

recover the latent structure, which leads to good predictive

performance.

• The random quadratic form example shows that highly

complex models can lead to worse performance that classical

PCR.

• NLDR methods have known limitations:

• Trouble with manifolds with non-trivial homology (holes and

self-intersections)

• Sensitive to choice of neighbourhoods.

• Where is the boundary between both regimes?

19/21



Theoretical results

• Whitney’s and Nash’s embedding theorems guarantee that any

(smooth or Riemannian) manifold can be embedded without

intersections in a Euclidean space of high enough dimension.

• Johnson-Lindenstrauss lemma: We can project

high-dimensional data points and preserve distances if

dimension of lower space is high enough.
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Final remarks

• Where does nature fit in all this? What kind of latent

structures may underlie neuroimaging or genomic data?

• Future Work: Find low dimensional example with low
performance, and high-dimensional example with good
performance.

• The latter implies finding a way to generate a high-dimensional

structure with no self-intersection.
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Questions or comments?

For more information and updates, visit

maxturgeon.ca.
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