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Objectives

- Introduce Canonical Correlation Analysis
- Both the population and sample models
- Discuss generalizations of correlation coefficients
- Give a geometric interpretation of CCA
- Explain the relationship between CCA and the likelihood ratio
test for independence

- Introduce reduced-rank regression



Introduction

- Canonical Correlation Analysis (CCA) is a dimension reduction
method that is similar to PCA, but where we simultaneously
reduce the dimension of two random vectors Y and X.

- Instead of trying to explain overall variance, we try to explain
the correlation Corr(Y, X).

- Note that this is a measure of association between Y and X.

- Examples include:

- Arithmetic speed and power (Y) and reading speed and power
(X)

- College performance metrics (Y) and high-school achievement
metrics (X))



Population model i

- Let Y and X be p- and g-dimensional random vectors,
respectively.

- We will assume that p < q.

- Let py and pux be the mean of Y and X, respectively.

- Let Xy and X x be the covariance matrix of Y and X,
respectively, and let Ny x = Y%+~ be the covariance matrix
Cov(Y,X).

- Assume Xy and X x are positive definite.

- Note that Xy x has pq entries, corresponding to all covariances
between a component of Y and a component of X.

- Goal of CCA: Summarise Yy x with p numbers.

- These p numbers will be called the canonical correlations.



Dimension reduction i

- LetU = a’Y and V = "X be linear combinations of Y and
X, respectively.
- We have:
- Var(U) = a’'Sya
- Var(V) = bT'Sxb
- Cov(U,V) = a” Sy xb.
- Therefore, we can write the correlation between U and V' as
follows:

aszxb
Corr(U,V) = NSNS

- We are looking for vectors a € RP, b € R? such that
Corr(U, V') is maximised.




- The first pair of canonical variates is the pair of linear
combinations Uy, V; with unit variance such that Corr(Uy, V4)
is maximised.

- The k-th pair of canonical variates is the pair of linear
combinations Uy, Vi with unit variance such that Corr(Uy, V)
is maximised among all pairs that are uncorrelated with the
previous k — 1 pairs.

- When Uy, V} is the k-th pair of canonical variates, we say that
pr = Corr(Uy, Vi) is the k-th canonical correlation.



Derivation of canonical variates i

- Make a change of variables:

- a= E%,/Qa
- b=xY%

- We can then rewrite the correlation:

77

a nyb
Corr(U,V) =
( ) \/CLTZya,\/bTZXb
I >l YW sl

VaTaviTh
- let M = Z;UQZYXE;/Q. We have

max Corr(a’Y,b"X) <=  max  a’Mb
@b a5 all=1,[B=1



Derivation of canonical variates ii

- As we will see, the solution to this maximisation problem
involves the singular value decomposition of M.

- Equivalently, it involves the eigendecomposition of M M7,
where

MMT = 375y x 53 Sxy 552



CCA: Main theorem i

- Let Ay > --- > A, be the eigenvalues of
Z‘WEYXEX zxyz‘”?
- Leteq,...,ep bethe corresponding eigenvector with unit norm.

- Note that A\; > --- > ), are also the p largest eigenvalues of
MTM = S35y S5 Sy x 5572

- Let fi1,..., fp be the corresponding eigenvectors with unit

norm.

- Then the k-th pair of canonical variates is given by

U, =els77%Y, V= f[IS7?X.



CCA: Main theorem i

- Moreover, we have

pr. = Corr(Uy, Vi) = \/)\7;C



First, we write ~
a’Mb
P1L= —(F— —-
vaTavolb
Applying the Cauchy-Schwartz inequality to the numerator of p%, we
have
-~ 2 ~ -
(a"Mb)" < (a’a) (6" M Mb),

with equality if there exists a scalar C' such that

a = CMb.



We now have

(aTa) (BT MT Mb)
(aTa) (b7D)

(6" MTMb)

From our discussion on PCA, we know that we can maximise the ratio
(BTMTME)
bTh
largest eigenvalue \; of M1 M.

by taking b to be the eigenvector corresponding to the



In turn, this gives us

MM"a = MM (CMD)
= CM (M Mb)
= CM (M)
= Ay (CMD)

= )\1&

In other words, when pf attains its maximum, @ is equal to the

eigenvector corresponding to the largest eigenvalue A\ of MMT,



Finally, we simply note that if @ = ey and b= f1, then we have
a=x7"e, b=3x"f.

The next canonical variates are obtained by imposing an orthgonality

constraint and repeating this analysis. O



Some vocabulary

1. Canonical directions: (el _1/2 fkTE_l/Q)
2. Canonical variates: (Uy, Vk) = ( kZ;l/QY, fkTZ)_(l/QX)
3. Canonical correlations: pr = /A



Sigma_Y <- matrix(c(1, 0.4, 0.4, 1), ncol = 2)
Sigma_X <- matrix(c(1, 0.2, 0.2, 1), ncol = 2)
Sigma_YX <- matrix(c(0.5, 0.3, 0.6, 0.4), ncol = 2)
Sigma_XY <- t(Sigma_YX)

rbind(cbind(Sigma_Y, Sigma_YX),
cbind(Sigma_XY, Sigma_X))



it [,11 [,21 [,3] [,4]
## [1,] 1.0 0.4 0.5 0.6
## [2,] 0.4 1.0 0.3 0.4
## [3,] 0.5 0.3 1.0 0.2
## [4,] 0.6 0.4 0.2 1.0



library(expm)

sqrt_Y <- sqrtm(Sigma_Y)

sqrt_X <- sqrtm(Sigma_X)

M1 <- solve(sqrt_Y) %*% Sigma_YX %*% solve(Sigma_X)%*%
Sigma_XY %*% solve(sqrt_Y)

(decompl <- eigen(M1))



IIEHHHingIHIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

## eigen() decomposition

## $values

## [1] 0.5457180317 0.0009089525
#

## $vectors

i [,1] [,2]

## [1,] -0.8946536 0.4467605
## [2,] -0.4467605 -0.8946536

decompil$vectors[,1] %*% solve(sqrt_Y)



IIEHHHHHHiIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

#t [,1] [,2]
## [1,] -0.8559647 -0.2777371

M2 <- solve(sqrt_X) %*% Sigma_XY %*% solve(Sigma_Y)%+*%
Sigma_YX %*% solve(sqrt_X)

decomp2 <- eigen(M2)
decomp2$vectors[,1] %*% solve(sqrt_X)

#it [,1] [,2]
## [1,] 0.5448119 0.7366455
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sqrt(decompl$values)

## [1] 0.73872731 0.03014884

21



Sample CCA

- LetYq,..., Y, and Xy,..., X, be random samples, and
arrange them inn X pand n X g matrices Y, X, respectively.
- Note that both sample sizes are equal.
- Indeed, we assume that (Yi, Xi) are sampled jointly, i.e. on
the same experimental unit.

- Let'Y and X be the sample means.

- Let Sy and Sx be the sample covariances.

- Define

Syx= 3 (Y- ¥) (X X)".

22



Sample CCA: Main theorem i

- Let Ay > --- > A, be the eigenvalues of
—1/2 1 -1/2
N =R
- Letéq,..., €y be the corresponding eigenvector with unit norm.

- Note that 5\1 > > 5\p are also the p largest eigenvalues of
—1/2 _ —1/2
Sx*Sxyv S7 Sy x S5 2.

- Let fi1,..., fp be the corresponding eigenvectors with unit

norm.

- Then the k-th pair of sample canonical variates is given by
U, =YS, %6, Vi = XS f.

23



Sample CCA: Main theorem ii

- Moreover, we have that gy = \/ ;\k is the sample correlation of
Ui and V.

24



Example (cont’d) i

# Let's generate data

library(mvtnorm)

Sigma <- rbind(cbind(Sigma_Y, Sigma_YX),
cbind(Sigma_XY, Sigma_X))

YX <- rmvnorm(100, sigma = Sigma)
Y <- YX[,1:2]

X <- YX[,3:4]

decomp <- stats::cancor(x = X, y =Y)

25



Example (cont’d) ii

U <- Y %*% decomp$ycoef
V <- X %*% decomp$xcoef

diag(cor(U, V))

## [1] 0.789215963 0.005973183

decomp$cor

## [1] 0.789215963 0.005973183

26



library(tidyverse)

library(dslabs)

str(olive)

## 'data.frame': 572 obs. of 10 variables:

## $ region : Factor w/ 3 levels "Northern Italy”,..
## $ area : Factor w/ 9 levels "Calabria”,”Coast-S
# $ palmitic : num 10.75 10.88 9.11 9.66 10.51 ...

## $ palmitoleic: num 0.75 0.73 0.54 0.57 0.67 0.49 0.6
## $ stearic cnum 2.26 2.24 2.46 2.4 2.59 2.68 2.64

27



Hit
#Hit
Hit
Hit
Hit

$ oleic

$ linoleic
$ linolenic
$ arachidic

$ eicosenoic

num
num
num
num

num

78.2 77.1 81.1 79.5 77.7 ...

6.72 7.81 5.49 6.19 6.72 6.78 6.1
0.36 0.31 0.31 0.5 0.5 0.51 0.49
0.6 0.61 0.63 0.78 0.8 0.7 0.56 0O
0.29 0.29 0.29 0.35 0.46 0.44 0.2

# X contains the type of acids

X <- select(olive, -area, -region) %>%

as.matrix

# Y contains the information about regions

count(olive, region)

28



## # A tibble: 3 x 2

##  region n
#t  <fct> <int>
## 1 Northern Italy 151
## 2 Sardinia 98

## 3 Southern Italy 323

Y <- select(olive, region) %>%

model.matrix(~ region - 1, data = .)

# We get three dummy variables
head(unname(Y))

29
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#t [,1]1 [,2] [,3]
## [1,] 0 0
## [2,] 0
## [3,] 0
## [4,] 0
## [5,] 0
#tt [6,] 0

o O © o o
R R R R R R

decomp <- cancor(X, Y)

V <- X %*% decomp$xcoef
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data.frame(

vi = Vv[,1],

v2 = Vv[,2],

region = olive$region
) %>%

ggplot(aes(V1l, V2, colour = region)) +
geom_point() +
theme_minimal() +

theme(legend.position = 'top')
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Example

region Northern ltaly ® Sardinia ® Southern Italy

-1.20

-1.25

V2

-1.35

-1.40

\% 1
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Comments i

- The main difference between CCA and Multivariate Linear
Regression is that CCA treats Y and X symmetrically.
- As with PCA, you can use CCA and the covariance matrix or the

correlation matrix.

- The latter is equivalent to performing CCA on the standardised
variables.

- Note that sample CCA involves inverting the sample covariance
matrices Sy and Sx:
- This means we need to assume p, g < n.

- In general, this is what drives most of the performance (or lack
thereof) of CCA.
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Comments ii

- There may be gains in efficiency by directly estimating the
inverse covariance.

- When one of the two datasets Y or X represent indicators
variables for a categorical variables (cf. the olive dataset), CCA is
equivalent to Linear Discriminant Analysis.

- To learn more about this method, see a course/textbook on

Statistical Learning.
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Proportions of Explained Sample Variance i

- Just like in PCA, there is a notion of proportion of explained
variance that may be helpful in determining the number of
canonical variates to retain.

- Assume that Yq,...,Y, and X4,..., X, have been
standardized.

- Recall that

- tr (Corr(Y)) =p
- tr (Corr(X)) = ¢
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Proportions of Explained Sample Variance ii

- We define the following quantities:

- Proportion of total standardized sample variance in

A

Y= (Yl Yp) explained by Ul, 500 g Ul

T Z§:1 Corr (ﬁz, Yj)2

RX(Y |Uy,...,U,) = )

- Proportion of total standardized sample variance in
X = (Xl e Xq) explained by f/l, cee VT:

A 2
N . >ie1 >y Corr (V;, X;
RA(X | Th,... V) = === ; (%:%)
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# Olive data--Standardize
X_sc <- scale(X)
Y_sc <- scale(Y)

decomp_sc <- cancor(X_sc, Y_sc)

# Extract Canonical variates
V_sc <- X_sc %*% decomp_sc$xcoef
colnames(V_sc) <- paste@(”CC”, seq_len(ncol(V_sc)))

(prop_X <- rowMeans(cor(V_sc, X_sc)"2))
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##t  CC1 cc2 CC3 CC4 CC5 CCo6 cc7 ccs
## 0.340 0.153 0.124 0.081 0.134 0.039 0.067 0.061

cumsum(prop_X)

## CCl1 CC2 CC3 C(CC4 CC5 CCbe cCCc7 ccs
## 0.34 0.49 0.62 0.70 0.83 0.87 0.94 1.00
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# But since we are dealing with correlations

# We get the same with unstandardized variables
decomp <- cancor(X, Y)

V <- X %*% decomp$xcoef

colnames(V) <- paste0(”CC”, seq_len(ncol(V)))

(prop_X <- rowMeans(cor(Vv, X)"2))

Hit cc1 cc2 CC3 CC4 CC5 CCé6 cc7 Cccs
##t 0.340 0.153 0.124 0.081 0.134 0.039 0.067 0.061
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cumsum(prop_X)

## CCl1 CC2 CC3 CC4 CC5 CCo6 cCCc7 ccs
## 0.34 0.49 0.62 0.70 0.83 0.87 0.94 1.00
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Interpreting the population canonical variates i

- To help interpretating the canonical variates, let's go back to the
population model.
- Define

( 2—1/2 o 652—1/2)T 7

A
B (flTE—l/Q o fTE_1/2>

- In other words, the rows of A and B are the canonical
directions.

41



Interpreting the population canonical variates ii

- Using this notation, we can get all canonical variates using one

linear transformation:
U =AY, V = BX.
- We then have
Cov(U,Y) = Cov(AY,Y) = AXy.
- Since Cov(U) = I, we have
Corr(Uy, Y;) = Cov(Uy, 07 'Y5),

where o2 is the variance of Y;.
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Interpreting the population canonical variates iii

- If we let Dy be the diagonal matrix whose i-th diagonal
element is 0; = 1/ Var(Y;), we can write

Corr(U,Y) = AXy Dyt
- Using similar computations, we get

Corr(U,Y) = AXy Dy, Corr(V,Y) = BXxy Dyt
Corr(U,X) = AXyxDy',  Corr(V,X) = B xDy".
- These quantities (and their sample counterparts) give us

information about the contribution of the original variables to

the canonical variates.
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# Let's go back to the olive data
decomp <- cancor(X, Y)

V <- X %*% decomp$xcoef

colnames(V) <- paste0(”CC”, seq_len(8))

library(lattice)

levelplot(cor(X, V[,1:21),
at = seq(-1, 1, by = 0.1),
xlab = "", ylab = "")

Lh



CC2

CC1

T
palmitic

T
palmitoleic

T
stearic

oleic

T
linoleic

T
linolenic

T
arachidic

T
eicosenoic

0.5

r 0.0

--05

L—L -1.0
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levelplot(cor(Y, V[,1:21),
at = seq(-1, 1, by = 0.1),
X'Lab = "’7’ y'Lab = l"’)
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Example iv

CC2

CC1 -

T
regionNorthern Italy

T
regionSardinia

T
regionSouthern Italy

r-05

= =il
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Generalization of correlation coefficients i

- The canonical correlations can be seen as a generalization of
many notions of “correlation”.
- If both Y, X are one dimensional, then

Corr(a’Y,b"X) = Corr(Y,X), foralla,b.

- In other words, the canonical correlation generalizes the
univariate correlation coefficient.

- Then assume Y is one-dimensional, but X is g-dimensional.
Then CCA is equivalent to (univariate) linear regression, and the
first canonical correlation is equal to the multiple correlation

coefficient.
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Generalization of correlation coefficients ii

- Now, let’s go back to full-generality: Y = (Y7,...,Y}),
X = (X1,...,X,). Leta be all zero except for a one in
position ¢, and let b be all zero except for a one in position j.

We have

|Corr(Y;, X;)| = |Corr(a”Y,b"X))|
< max Corr(a’ Y, b X)

a,b

= p1.

- In other words, the first canonical correlation is larger than any

entry (in absolute value) in the matrix Corr(Y, X).
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Generalization of correlation coefficients iii

- Finally, the k-th canonical correlation pg can be interpreted as
the multiple correlation coefficient of two different univariate
linear regression model:

- Uy, against X
- Vj against Y.

50



Example (cont’d) i

# Canonical correlations

decomp$cor

## [1] 0.95 0.84

# Maximum value in correlation matrix
max(abs(cor(Y, X)))

## [1] 0.89
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Example (cont’d) ii

# Multiple correlation coefficients
sqrt(summary(1lm(V[,1] ~ Y))$r.squared)

## [1] 0.95

sqrt(summary(lm(V[,2] ~ Y))$r.squared)

## [1] 0.84
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Geometric interpretation i

- Let’s look at a geometric interpretation of CCA.

- First, some notation:
- Let A be the matrix whose k-th row is the k-th canonical
direction 6%2;1/24
- Let E be the matrix whose k-th column is the eigenvector ey.
Note that ETE = I,

- We thus have A = ETE;/UZ.

- We get all canonical variates Uy, by transforming Y using A:

U = AY.
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Geometric interpretation i

- Now, using the spectral decomposition of Xy, we can write
=A% —1/2
A= ETs;Y? = ETP AT,

where Py contains the eigenvectors of Xy and Ay is the
diagonal matrix with its eigenvalues.

- Therefore, we can see that

U =AY = E"P, A;'?PLY.
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Geometric interpretation iii

- Let's look at this expression in stages:
. PgY: This is the matrix of principal components of Y.
. A;l/Q (Pg;Y): We standardize the principal components to
have unit variance.
- Py (A;l/QPgY): We rotate the standardized PCs using a
transformation that only involves Xy .
- ET (PYA;,UQPEY): We rotate the result using a

transformation that involves the whole covariance matrix 2.
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- Let's go back to the covariance matrix at the beginning of this

slide deck:

1.0 04 0.5 0.6
04 1.0 03 04
0.5 03 1.0 0.2
0.6 04 02 1.0
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Y2

1.0

0.5

0.0

-0.5

-1.0

> 1%5)

-1.0

-0.5

0.0

Y1

0.5

1.0

15
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Y2

1.0

0.5

0.0

-0.5

-1.0

> 1%5)

-1.0

-0.5

0.0

Y1

0.5

1.0

15
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Y2

1.0

0.5

0.0

-0.5

-1.0

> 1%5)

-1.0

-0.5

0.0

Y1

0.5

1.0

15
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Y2

1.0

0.5

0.0

-0.5

-1.0

> 1%5)

-1.0

-0.5

0.0

Y1

0.5

1.0

15
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Y2

1.0

0.5

0.0

-0.5

-1.0

> 1%5)

-1.0

-0.5

0.0

Y1

0.5

1.0

15
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Large sample inference
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Test of independence i

- Recall what we said at the outset: CCA trys to explain the

covariance Cov(Y, X).
- If there is no correlation between Y, X, then Xy x = 0.

- In particular, alSy xb =0 for any choice of a € RP, b € R¢,
and therefore all canonical correlations are equal to 0.
- To test for independence between Y and X, we can use a
likelihood ratio test.

- Recall our discussion of tests for covariance matrices.
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Let (Y;,X;), i =1,...,n, bearandom sample from a normal

distribution N1, (p, X), with
)Y )Y
$ Y vx |
Yxy Yx
Let Sy, Sx be the sample covariances of Y1,...,Y, and
Xi,..., X, respectively, and let S,, be the p + g-dimensional
sample covariance of (Y, X;).

Then the likelihood ratio test for Hy : Xy x = 0 rejects H for large

values of

p
—2log A = nlog <|Si|1,|b|yX|> = —nlog H(l - ﬁ?)y
n =1
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where p1, ..., pp are the sample canonical correlations.

Let’s prove the second equality: first, note that this is equivalent to

showing
T
1Sy ||Sx| '

i=1

Also, note that we can decompose .S,, into a block matrix:
S — Sy Svx
n — .
Sxy Sx
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We can then use the formula for the determinant of block matrix:

1Sn] = |Sx]| - 1Sy — SyxSx Sxv]|.
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LRT for Xy x = 0 iv

We can thus write

A2/n _

where

|5

[Sy[ISx|
_ 1Sx] - |Sy — SyxSx Sxv]|

Sy ||Sx|

_ |Sy — SyxSx' Sxv]|

|Sy|

= |I, — SyxSx" Sxy S|

= |1, —5_1 2SYXS 15)(5/5_1/2| :|]p_MMT|>

MMT = 578y x Sz Sxy Sy 2.
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LRT for Xy x =0 v

But we know that the eigenvalues of NMMT are ﬁ% >0 > ﬁf, and

therefore we can write

p
A =TI = 7))

i=1
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Null distribution

1. For large n, the statistic —2 log A is approximately chi-square

with degrees of freedom equal to

((p+q)(p2+q+ 1)> B (p(p; D q<q2+1)> = pq.

2. Bartlett's correction uses a different statistic (but the same null
distribution):

~(r=1-2+a+ 1) log ][0~ 7).

i=1

69



- We will look at a different example, this time from the field of
vegetation ecology.
- We have two datasets:
- varechem: 14 chemical measurements from the soil.
- varespec: 44 estimated cover values for lichen species.
- The data has 24 observations.
- For more details, see Vare, H., Ohtonen, R. and Oksanen, J. (1995)
Effects of reindeer grazing on understorey vegetation in dry

Pinus sylvestris forests. Journal of Vegetation Science 6, 523-530.
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library(vegan)

data(varespec)

data(varechem)

# There are too many variables in varespec

# Let's pick first 10

Y <- select(varespec, Callvulg:Diphcomp) %>%
as.matrix

Ul



# The help page in “vegan suggests a better

# chemical model

X <- model.matrix( ~ Al + P*(K + Baresoil) - 1,
data = varechem)

colnames(X)[1:4]

## [1] "A'l-" "P" "|<" "BaI‘eSOil"

colnames(X)[5:6]

## [1] "P:K” "P:Baresoil”
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decomp <- cancor(x = X, y =Y)

n <- nrow(X)
(LRT <- -n*log(prod(1 - decomp$cor”2)))

## [1] 156
p <- min(ncol(X), ncol(Y))

g <- max(ncol(X), ncol(Y))
LRT > qchisq(0.95, df = p=q)
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## [1] TRUE

LRT_bart <- -(n - 1 - 0.5%(p + g + 1)) =
log(prod(1 - decomp$cor”2))

c(”Large Sample” = LRT,
"Bartlett” = LRT_bart)

## Large Sample Bartlett
#it 156 94

LRT_bart > qchisq(0.95, df = pxq)
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## [1] TRUE
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Sequential inference i

- The LRT above was for independence, i.e. Xy x = 0.
- Given our description of CCA above, this test is equivalent to

having all canonical correlations being equal to 0.
EYX:0<:>p1:~~:pp:O.

- If we reject the null hypothesis, it is natural to ask how many

canonical correlations are nonzero.

- Recall that by design p; > - -+ > p,. We thus get a sequence of
null hypotheses:

H(’f:p1#0,...,pk7é(),pk+l:...:pp:()_
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Sequential inference ii

- We can test the k-th hypothesis using a truncated version of the
likelihood ratio test statistic:

1 p
LRTk:—<n—1—(p+q+1)>log 1 (-2,
2 i=k+1

where its null distribution is approximately chi-square on
(p — k)(q — k) degrees of freedom.
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Example (cont’d) i

# We can get the truncated LRTs in one go

(log_ccs <- rev(log(cumprod(1l - rev(decomp$cor)”2))))

## [1] -6.513 -4.002 -2.259 -1.011 -0.262 -0.073

(LRTs <- -(n - 1 - 0.5%(p + q + 1)) * log_ccs)

## [1] 94.4 58.0 32.7 14.7 3.8 1.1
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Example (cont’d) ii

k_seq <- seq(0, p - 1)
LRTs > qchisq(0.95,
df = (p - k_seq)*(q - k_seq))

## [1] TRUE FALSE FALSE FALSE FALSE FALSE

# We only reject the first null hypothesis

# of independence
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Example (cont’d) iii
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Reduced-Rank Regression
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Multivariate Linear Regression

- Recall the setup for MLR: Let Yy ..., Y, be a random sample
of size m, and let X4, ..., X,, be the corresponding sample of
covariates.

- We assume a linear relationship:
E(Y; | X;) = BTX;,

where B is a ¢ X p matrix of regression coefficients.
- We write Y and X for the matrices whose ¢-th row is Y; and
X, respectively.
- The OLS estimator is then given by
Bors = (XTX)'XTY.
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Reduced-Rank Regression—Motivation i

- Two important observations:

- The OLS estimate is equivalent to p independent univariate
regressions. In other words, no sharing of information across
outcome variables.

- There are pq regression coefficients to estimate. Every time we
had an outcome variable, we need to estimate ¢ new

parameters.
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Reduced-Rank Regression—Motivation ii

- One way to mitigate both effects is to impose a rank restriction
on B:

- rank(B) = k is equivalent to having p — k linear constraints
6GB=0, j=1,...,p—k

- rank(B) = k is also equivalent to writing BT = UV, where
Uisp x k,Visk x q,and both are of rank k. This means that

we have at most (p + q)k regression coefficients to estimate.
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Brillinger’s Theorem

Assume X;,Y; have mean zero. Define ¥y = Cov(Y)),

Yx = Cov(X;), and Xy x = Cov(Y;,X;), and assume that X x
is invertible. Finally, let I" be a p X p positive-definite weight matrix.
The p X k and k x g matrices U, V' of rank k that minimize

tr (B (TY2(Y; — UVX)(Y; - UVX,)'TY?))
are given by
U =T""2W,,
V = WITY28y x 53,
where the columns of W}, are the normalized eigenvectors

corresponding to the k largest eigenvalues of
| RVEDYINNS M) A VA
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Comments i

- This theorem can be proven using the Eckart-Young theorem
(see lectures on PCA).

- When p < ¢ and we choose k = p, we recover the OLS
estimate:

o B = T = S

- When I = 3, the columns of U are the canonical directions
for'Y;

- The term reduced-rank regression is typically reserve for the
case when I' = I, i.e. the weight matrix is the identity matrix.

86



Comments ii

- At the sample level, the result becomes

Wka
WEIYTX(XTX) ™,

<> &

where the columns of TV}, are the normalized eigenvectors

corresponding to the k largest eigenvalues of
YTX(XTX)_IXTY.
- This gives

Brr = (XTX)IXTYW,WE = BopsWiWE
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# Recall the plastic film data
library(heplots)

fit <- 1m(cbind(tear, gloss, opacity) ~ rate + additive,
data = Plastic)

coef(fit)

#it tear gloss opacity
## (Intercept) 6.30 9.40 3.29
## rateHigh 0.59 -0.51 0.29

## additiveHigh 0.39 0.35 0.99
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Y <- Plastic %>%
select(tear, gloss, opacity) %>%
as.matrix
X <- model.matrix(~ rate + additive, data = Plastic)

# We get the same as OLS
(beta_ols <- solve(crossprod(X), crossprod(X, Y)))

#it tear gloss opacity
## (Intercept) 6.29 9.39 3.29
## rateHigh 0.59 -0.51 0.29

## additiveHigh 0.39 0.35 0.99
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# Reduced-Rank regression
M <- crossprod(Y, X) %*% beta_ols
decomp <- eigen(M)

# Take rank = 1
W <- decomp$vectors[,1, drop=FALSE]
rownames(W) <- colnames(Y)

(beta_rrr <- beta_ols %*% tcrossprod(Ww))
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#it tear gloss opacity
## (Intercept) 6.551 8.990 3.811
## rateHigh 0.018 0.025 0.011

## additiveHigh 0.449 0.616 0.261

# Note that rank 1 means rows are colinear
beta_rrr[1,]/beta_rrr[2,]

#it tear gloss opacity
Hit 359 359 359
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Selecting the rank i

- Of course, the rank k is a tuning parameter that we need to
select.

- One approach is to use sequential inference (see Section 2.6 of
Reinsel and Velu).

- Another approach is to choose k that minimises the
cross-validated MSE (cf. Lectures on Regularized Regression).

- In this lecture, we will focus on Information Criteria.

- Recall the general form of Akaike’s information criterion:
—2log L(B, %) + 2d,

where d is the number of parameters to estimate.

92



Selecting the rank ii

- On the other hand, if we restrict B to have rank k, there are
only d = (p+ q — k)k free parameters.

- kq free parameters for the column space of B

- k(p — k) free parameters for the remaining columns
- However, a careful analysis shows that this is actually an
underestimate of the true degrees of freedom
- If A1 .., Ap are the eigenvalues of YT X(XTX)~1XTY, then

d=p+q—k k—I-QZZ
=i = k:+1

- See for example Yuan (2016) Degrees of freedom in low rank

matrix estimation
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Selecting the rank iii

- The function rrpack: : rrr calls the first type of degrees of

freedom naive, and the second type, exact.

- By default, it uses the exact degrees of freedom.
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Example (cont’d) i

# Let's create a function

redrank <- function(Y, X, rank = 1) {
beta_ols <- solve(crossprod(X), crossprod(X, Y))
M <- crossprod(Y, X) %*% beta_ols
decomp <- eigen(M)
W <- decomp$vectors[,seq_len(rank),drop=FALSE]
rownames(W) <- colnames(Y)

return(beta_ols %*% tcrossprod(W))
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Example (cont’d) ii

all.equal(beta_rrr, redrank(Y, X))

## [1] TRUE

# First the log likelihoods

loglik <- sapply(c(1, 2, 3), function(k) {
beta_rrr <- redrank(Y, X, k)
resids <- Y - X %*% beta_rrr
-2+sum(dmvnorm(resids, log = TRUE,

sigma = crossprod(resids)/nrow(resids)))

b

96



Example (cont’d) iii

# With naive degrees of freedom
2xseq_len(3)*(ncol(X) + ncol(Y) -
seq_len(3)) + loglik

## [1] 139 133 126
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Example (cont'd) iv

# With exact degrees of freedom
dfs <- sapply(seq_len(3), function(k) {
total <- 0
lambdas <- decomp$values[seq(k+1, ncol(Y))]
for (ell in seq(1, k)) {
total <- sum(lambdas/(decomp$values[ell] - lambdas))
}
if (k == ncol(Y)) return(0) else return(2+total)
)
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Example (cont’d) v

2xseq_len(3)*(ncol(X) + ncol(Y) -
seq_len(3)) + 2xdfs + loglik

## [1] 139.4238 134.8934 125.9592

# Both approaches select the full-rank model

# Constrast this with rrpack::rrr
# Which uses a different AIC
rrpack::rrr(Y, X, ic.type = "AIC")
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Example (cont’d) vi

## Call:

## rrpack::rrr(Y =Y, X = X, ic.type = "AIC")
Hit

## Estimated Rank: 1
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Example 2 i

# Tobacco dataset
tobacco_y <- as.matrix(rrr::tobacco[,1:3])

tobacco_x <- as.matrix(rrr::tobaccol,4:9])

dim(tobacco_x)

## [1] 25 6

dim(tobacco_y)

## [1] 25 3
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Example 2 ii

(rr_fit <- rrpack::rrr(tobacco_y, tobacco_x))

## Call:

## rrpack::rrr(Y = tobacco_y, X = tobacco_x)
#i

## Estimated Rank: 1

library(lattice)

coef <- rr_fit$coef

colnames(coef) <- colnames(tobacco_y)
levelplot(coef)
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Example 2 i

Y3.PercentNicotine —

Y2.PercentSugar —|

column

Y1.BurnRate -

T T T T T T
X1.PercentNitrogenX2.PercentChlorin&3.PercentPotassi#.PercentPhosphorués. PercentCalciuii6. PercentMagnesium

row
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