Elliptical Distributions

Max Turgeon

STAT 7200-Multivariate Statistics

Density contours i

Recall the density of the multivariate normal distribution:

$$f(\mathbf{Y}) = \frac{1}{\sqrt{(2\pi)^p |\Sigma|}} \exp\left(-\frac{1}{2}(\mathbf{Y} - \mu)^T \Sigma^{-1} (\mathbf{Y} - \mu)\right).$$

• For a real number k>0, we can look at the values of ${\bf Y}$ for which $f({\bf Y})=k$. We have

Density contours ii

$$f(\mathbf{Y}) = k \Leftrightarrow \frac{1}{\sqrt{(2\pi)^p |\Sigma|}} \exp\left(-\frac{1}{2} (\mathbf{Y} - \mu)^T \Sigma^{-1} (\mathbf{Y} - \mu)\right) = k$$
$$\Leftrightarrow \exp\left(-\frac{1}{2} (\mathbf{Y} - \mu)^T \Sigma^{-1} (\mathbf{Y} - \mu)\right) = k\sqrt{(2\pi)^p |\Sigma|}$$
$$\Leftrightarrow (\mathbf{Y} - \mu)^T \Sigma^{-1} (\mathbf{Y} - \mu) = -2\log\left(k\sqrt{(2\pi)^p |\Sigma|}\right).$$

Density contours iii

 In other words, the sets of constant density correspond to the sets where the quadratic form

$$(\mathbf{Y} - \mu)^T \Sigma^{-1} (\mathbf{Y} - \mu)$$

is constant.

 The latter sets are ellipses (or multivariate generalizations thereof).

Example i

Example ii

```
library(tidyverse)
ggplot(data, aes(Var1, Var2)) +
  geom_contour(aes(z = dvalues)) +
  coord_fixed(ratio = 1)
```

Example iii

Example iv

```
k < -0.12
const <- -2*log(k*2*pi*sqrt(det(Sigma)))</pre>
# Generate a circle
# First create a circle of radius const
theta vect <- seq(0, 2*pi, length.out = 100)
circle <- const * cbind(cos(theta vect),
                         sin(theta vect))
```

Example v

```
# Compute inverse Cholesky
transf_mat <- solve(chol(solve(Sigma)))
# Then turn circle into ellipse
ellipse <- circle %*% t(transf_mat)
# Then translate
ellipse <- t(apply(ellipse, 1, function(row) row + mu)</pre>
```

Example vi

Example vii

Elliptical distributions

- Elliptical distributions are a generalization of the multivariate normal distribution that retain the property that lines of constant density are ellipses.
- More formally, let $\mu \in \mathbb{R}^p$ and Λ be a $p \times p$ positive-definite matrix. If \mathbf{Y} has density

$$f(\mathbf{Y}) = |\Lambda|^{-1/2} g\left((\mathbf{Y} - \mu)^T \Lambda^{-1} (\mathbf{Y} - \mu) \right),$$

where $g:[0,\infty)\to [0,\infty)$ does not depend on μ,Λ , we say that $\mathbf Y$ follows an **elliptical distribution** with location-scale parameters μ,Λ , and we write $\mathbf Y\sim E_p(\mu,\Lambda)$.

Properties i

- The class $E_p(\mu, \Lambda)$ contains the multivariate normal distribution $N_p(\mu, \Lambda)$.
 - With $g(t)=(2\pi)^{-p/2}\exp\left(-\frac{1}{2}t\right)$.
- Affine transformations of elliptical distributions are again elliptical:
 - If $\mathbf{Y} \sim E_p(\mu, \Lambda)$ and B is invertible, then $B\mathbf{Y} + b \sim E_p(B\mu + b, B\Lambda B^T)$.
- We call $E_p(0,I_p)$ the class of *spherical distributions*.

Properties ii

• If $\mathbf{Y} \sim E_p(\mu, \Lambda)$, then its characteristic function is given by

$$\varphi_{\mathbf{Y}}(\mathbf{t}) = \exp(i\mathbf{t}^T \mu)\psi(\mathbf{t}^T \Lambda \mathbf{t}),$$

for some real-valued function ψ .

• If $\mathbf{Y} \sim E_p(\mu, \Lambda)$ has moments of order 2, then $E(\mathbf{Y}) = \mu$ and $Cov(\mathbf{Y}) = \alpha \Lambda$, where $\alpha = -2\psi'(0)$.

Proposition

Let $\mathbf{Y} \sim E_p(\mu, \Lambda)$, and write

$$\mathbf{Y} = \begin{pmatrix} \mathbf{Y}_1 \\ \mathbf{Y}_2 \end{pmatrix}, \qquad \mu = \begin{pmatrix} \mu_1 \\ \mu_2 \end{pmatrix},$$
$$\Lambda = \begin{pmatrix} \Lambda_{11} & \Lambda_{12} \\ \Lambda_{21} & \Lambda_{22} \end{pmatrix}.$$

Then $\mathbf{Y}_1 \sim E_{p_1}(\mu_1, \Lambda_{11})$ and $\mathbf{Y}_2 \sim E_{p_1}(\mu_2, \Lambda_{22})$.

Theorem

Let $\mathbf{Y} \sim E_p(\mu, \Lambda)$, and assume the same partition of μ and Λ as previously. Then

$$\mathbf{Y}_1 \mid \mathbf{Y}_2 = \mathbf{y}_2 \sim E_{p_1}(\mu_{1|2}, \Lambda_{1|2}),$$

where

$$\mu_{1|2} = \mu_1 + \Lambda_{12} \Lambda_{22}^{-1} (\mathbf{y}_2 - \mu_2),$$

$$\Lambda_{1|2} = \Lambda_{11} - \Lambda_{12} \Lambda_{22}^{-1} \Lambda_{21}.$$

Unlike the normal distribution, the conditional covariance $Cov(\mathbf{Y}_1 \mid \mathbf{Y}_2 = \mathbf{y}_2)$ will in general depend on \mathbf{y}_2 .

First Example–Mixture of standard normal

- Let $\mathbf{Z} \sim N_p(0, I_p)$ and $w \sim F$, where F is supported on $[0, \infty)$.
- If we set $\mathbf{Y} = W^{1/2}\mathbf{Z}$, then $\mathbf{Y} \sim E_p(0, I_p)$ has a spherical distribution.
- Examples:
 - $P(W = \sigma^2) = 1$ gives the multivariate normal $N_p(0, \sigma^2 I_p)$.
 - $P(W=1)=1-\epsilon$ and $P(W=\sigma^2)=\epsilon$ gives the symmetric contaminated normal distribution.
- We can generate data from these distributions by sampling W and Z independently and then calculating Y.

Simulating data i

```
set.seed(7200)

n <- 1000
p <- 2
Z <- rmvnorm(n, sigma = diag(p))</pre>
```

Simulating data ii

Simulating data iii

Simulating data iv

Simulating data v

Simulating data vi

Simulating data vii

```
# Let's look at the distribution of the sample means
B <- 1000; n <- 100
data <- purrr::map_df(seq_len(B), function(b) {</pre>
  Z <- rmvnorm(n, sigma = diag(p))</pre>
  Y \leftarrow sample(c(sigma, 1), size = n, replace = TRUE,
             prob = c(epsilon, 1 - epsilon)) * Z
  out <- data.frame(rbind(colMeans(Z), colMeans(Y)))</pre>
  out$Dist <- c("Standard", "Contaminated")</pre>
  return(out)
  })
```

Simulating data viii

```
ggplot(data, aes(X1, X2)) +
geom_point(aes(colour = Dist)) +
theme(legend.position = 'top')
```

Simulating data ix

Second Example–t distribution i

• Let $\nu > 0$. If we take W in the mixture distribution above to be such that $\nu W^{-1} \sim \chi^2(\nu)$, we get the multivariate t distribution $t_{p,\nu}$. Its density is given by

$$f(\mathbf{Y}) = c_{p,\nu} (1 + \mathbf{Y}^T \mathbf{Y} / \nu)^{-(\nu+p)/2},$$

where

$$c_{p,\nu} = \frac{(\nu\pi)^{-p/2}\Gamma\left(\frac{1}{2}(\nu+p)\right)}{\Gamma\left(\frac{1}{2}\nu\right)}.$$

Second Example–*t* distribution ii

■ By relocating and rescaling, we can obtain the general multivariate t distribution $t_{p,\nu}(\mu,\Lambda)$: assume $\mathbf{Z} \sim t_{p,\nu}$ and set $\mathbf{Y} = \Lambda^{1/2}\mathbf{Z} + \mu$. The density of \mathbf{Y} is now

$$f(\mathbf{Y}) = c_{p,\nu} |\Lambda|^{-1/2} (1 + (\mathbf{Y} - \mu)^T \Lambda^{-1} (\mathbf{Y} - \mu) / \nu)^{-(\nu+p)/2}.$$

• Note that the multivariate $t_{p,1}$ with $\nu=1$ is known as the multivariate Cauchy distribution.

Second Example–*t* distribution iii

- The following side-by-side comparison may be helpful: Let $\mathbf{Z} \sim N(0, I_p)$, $\nu > 0$, $\mu \in \mathbb{R}^p$ and $\Lambda \ p \times p$ and positive definite.
 - $\mu + \Lambda^{1/2} \mathbf{Z} \sim N_p(\mu, \Lambda);$
 - $\mu + \sqrt{W} \Lambda^{1/2} \mathbf{Z} \sim t_{p,\nu}(\mu, \Lambda)$, where $\nu W^{-1} \sim \chi^2(\nu)$.
- Finally, note that if $\mathbf{Y} \sim t_{p,\nu}(\mu,\Lambda)$, we have
 - $E(\mathbf{Y}) = \mu$, assuming $\nu > 1$;
 - $\operatorname{Cov}(\mathbf{Y}) = \frac{\nu}{\nu 2} \Lambda$, assuming $\nu > 2$.

Example i

```
library(mvtnorm)
n < -1000
mu < -c(1, 2)
Sigma \leftarrow matrix(c(1, 0.5, 0.5, 1), ncol = 2)
# Recall the multivariate case
Y norm <- rmvnorm(n, mean = mu, sigma = Sigma)
colMeans(Y norm)
```

[1] 1.010602 1.990707

Example ii

```
cov(Y norm)
               \lceil .1 \rceil \qquad \lceil .2 \rceil
##
## [1,] 0.9937129 0.5059292
## [2,] 0.5059292 0.9983259
# Now the t distribution
nii < -4
Y t <- rmvt(n, sigma = Sigma, df = nu, delta = mu)
colMeans(Y t)
```

Example iii

```
## [1] 1.054561 2.041417

cov(Y_t)

## [,1] [,2]
## [1,] 1.8399561 0.9004441
## [2,] 0.9004441 1.9164044
```

Example iv

```
data plot <- rbind(</pre>
  mutate(data.frame(Y norm), dist = "normal"),
  mutate(data.frame(Y t), dist = "t")
ggplot(data plot, aes(X1, X2)) +
  geom_point(alpha = 0.25) +
  geom density 2d() +
  facet grid(~ dist, labeller = label both)
```

Example v

Estimation i

- Given a random sample $\mathbf{Y}_1, \dots, \mathbf{Y}_n$ from an elliptical distribution $E_p(\mu, \Lambda)$, we are interested in estimating μ and Λ .
- Recall that the sample mean and the sample covariance are still consistent:

$$\bar{\mathbf{Y}} \to \mu$$

 $S_n \to \alpha \Lambda$.

- However, in general, they are no longer efficient.
 - You can build estimators with smaller variance.

Estimation i

The log-likelihood for our random sample is

$$\ell(\mu, \Lambda) = \sum_{i=1}^{n} \log \left(g \left((\mathbf{Y}_i - \mu)^T \Lambda^{-1} (\mathbf{Y}_i - \mu) \right) \right) - \frac{n}{2} \log |\Lambda|.$$

• Differentiating with respect to μ and Λ and setting the derivatives equal to zero, we get a system of equations:

$$\sum_{i=1}^{n} u(s_i) \Lambda^{-1}(\mathbf{Y}_i - \mu) = 0$$

$$\frac{1}{2} \sum_{i=1}^{n} u(s_i) \Lambda^{-1}(\mathbf{Y}_i - \mu) (\mathbf{Y}_i - \mu)^T \Lambda^{-1} - \frac{n}{2} \Lambda^{-1} = 0,$$

Estimation iii

where

$$u(s) = -2g'(s)/g(s),$$

$$s_i = (\mathbf{Y}_i - \mu)^T \Lambda^{-1} (\mathbf{Y}_i - \mu).$$

Therefore, the MLE estimators (if they exist!) satisfy the following equations:

$$\hat{\mu} = \frac{\frac{1}{n} \sum_{i=1}^{n} u(s_i) \mathbf{Y}_i}{\frac{1}{n} \sum_{i=1}^{n} u(s_i)},$$

$$\hat{\Lambda} = \frac{1}{n} \sum_{i=1}^{n} u(s_i) (\mathbf{Y}_i - \hat{\mu}) (\mathbf{Y}_i - \hat{\mu})^T.$$

Estimation iv

 In other words, the MLE are in general weighted sample estimators.

Additional comments

- The MLEs do not have a closed form solution.
 - They must be computed using an iterative scheme.
- The existence and uniqueness of a solution to these estimating equations is a difficult theoretical problem.
- Alternatively, one can use robust estimators that have good properties for most elliptical distributions.
 - ullet E.g M-estimators and S-estimators.
 - For details, see Chapter 13 of Theory of Multivariate Statistics
- On the Bayesian side of estimation, there is in general no closed form for the posterior distribution.
 - But efficient MCMC strategies can be developed for elliptical distributions.