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Density contours i

» Recall the density of the multivariate normal distribution:
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f(Y)—WeXp<—2(Y—u) EY - ).

= For a real number k£ > 0, we can look at the values of Y
for which f(Y) = k. We have



Density contours ii
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Density contours iii

= In other words, the sets of constant density correspond to
the sets where the quadratic form

(Y = )" H(Y — )

is constant.
= The latter sets are ellipses (or multivariate
generalizations thereof).



library(mvtnorm)

mu <- c(2, 1)

Sigma <- matrix(c(1, 0.5, 0.5, 1), ncol = 2)

data <- expand.grid(seq(0, 4, length.out = 32),
seq(0, 2, length.out = 32))

data["dvalues"] <- dmvnorm(data, mean = mu,

sigma = Sigma)



library(tidyverse)
ggplot(data, aes(Varl, Var2)) +
geom_contour(aes(z = dvalues)) +

coord_fixed(ratio = 1)
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k <- 0.12
const <- -2xlog(k*2*pi*sqrt(det(Sigma)))

# Generate a circle

# First create a circle of radius const

theta_vect <- seq(0, 2#*pi, length.out = 100)

circle <- const * cbind(cos(theta vect),
sin(theta_vect))



# Compute inverse Cholesky

transf mat <- solve(chol(solve(Sigma)))

# Then turn circle into ellipse

ellipse <- circle %*J t(transf_mat)

# Then translate

ellipse <- t(apply(ellipse, 1, function(row) row + mu)



# Add ellipse to previous plot
ggplot (data, aes(Varl, Var2)) +
geom_contour (aes(z = dvalues)) +
geom_polygon(data = data.frame(ellipse),
aes(X1, X2), colour = 'red', fill = NA) +

coord_fixed(ratio = 1)
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Elliptical distributions

» Elliptical distributions are a generalization of the
multivariate normal distribution that retain the property
that lines of constant density are ellipses.

= More formally, let € R? and A be ap x p
positive-definite matrix. If Y has density

FOY) = A7 (Y = )" ATH(Y = ),

where g : [0,00) — [0, 00) does not depend on u, A, we
say that Y follows an elliptical distribution with
location-scale parameters p, A, and we write

Y ~ E,(u, A).
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= The class E,(u, A) contains the multivariate normal
distribution N, (p, A).
= With g(t) = (27r)_p/2 exp (—%t) .
= Affine transformations of elliptical distributions are again
elliptical:
» If Y ~ E,(p,A) and B is invertible, then
BY + b~ E,(Bu+b, BABT).
= We call £,(0,1,) the class of spherical distributions.
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» IfY ~ E, (i, A), then its characteristic function is given
by
py(t) = exp(it’ p)p(t"At),
for some real-valued function .

= IfY ~ E,(u,A) has moments of order 2, then E(Y) = p
and Cov(Y) = aA, where o = —2¢/(0).
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Let Y ~ E,(u, A), and write

Then Y1 ~ Epl(luleu) and Yg ~ Epl ([,LQ,AQQ).
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Let Y ~ E,(u, A), and assume the same partition of 1 and A
as previously. Then

Y, \ Yy =y~ B (M1\27A1|2)7

where

pajz = i1+ AaAgy (y2 — p2),
Ajp = A — A12A5y Mgy

Unlike the normal distribution, the conditional covariance
Cov(Y: | Yo =y2) will in general depend on ys.
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First Example—Mixture of standard normal

» Let Z ~ N,(0,1,) and w ~ F, where F'is supported on
[0, 00).
= If weset Y = WY2Z, then Y ~ E,(0, ) has a spherical
distribution.
= Examples:
= P(W = 0?) =1 gives the multivariate normal
N,(0,0%L,).
» P(W=1)=1-¢and P(W = 0?) = € gives the
symmetric contaminated normal distribution.
= We can generate data from these distributions by
sampling W and Z independently and then calculating Y.
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Simulating data i

set.seed (7200)
n <- 1000

p <-2
Z <- rmvnorm(n, sigma = diag(p))
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Simulating data i

sigma <- 2

epsilon <- 0.25

w <- sample(c(sigma, 1), size = n, replace = TRUE,
prob = c(epsilon, 1 - epsilon))

Y <- wxZ
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Simulating data iii

# Plot the results
par (mfrow = c(1, 2))
plot(Z, main = 'Standard Normal',
xlim = c(-4.5, 6.5), ylim = c(-7, 5))
plot(Y, main = 'Contaminated Normal',
xlim = c(-4.5, 6.5), ylim = c(-7, 5))
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Simulating data iv

Standard Normal Contaminated Normal
< 1 < 1 o)
o o
o o
S 8
N = o
NI NI
) )
< <
1 1
e
©o _] © _| @
] ]
o
T T T T T T T T T T T T
-4 -2 0 2 4 6 -4 2] 0 2 4 6
7[1] Y1

21



Simulating data v

# Colour points of Y according to
# which distribution they come from
plot(Y, main = 'Contaminated Normal', col = w,
xlim = c¢(-4.5, 6.5), ylim = c(-7, 5))
legend("bottomleft", legend = c("Sigma = 1", "Sigma =
col = c(1, 2), pch = 1)
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Simulating data vi
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Simulating data vii

# Let's look at the distribution of the sample means
B <- 1000; n <- 100
data <- purrr::map_df(seq_len(B), function(b) {
Z <- rmvnorm(n, sigma = diag(p))
Y <- sample(c(sigma, 1), size = n, replace = TRUE,
prob = c(epsilon, 1 - epsilon)) * Z

out <- data.frame(rbind(colMeans(Z), colMeans(Y)))
out$Dist <- c("Standard", "Contaminated")

return(out)

b
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Simulating data viii

ggplot (data, aes(X1, X2)) +

geom_point(aes(colour =

= Dist)) +
theme (legend.position = 'top')
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Second Example—t distribution i

» Let v > 0. If we take W in the mixture distribution
above to be such that W~ ~ x?(v), we get the
multivariate ¢ distribution ¢, ,. Its density is given by

FOY) = (1 + YTY J1)= 04D,

where
(vm)~P/2T (%(V + p)) |

)

2
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Second Example—t distribution ii

» By relocating and rescaling, we can obtain the general
multivariate ¢ distribution ¢, (4, A): assume Z ~ ¢, and
set Y = AY2Z + p. The density of Y is now

FOY) = el A2 (Y = ) TATNY = ) /)~

= Note that the multivariate ¢, ; with v = 1 is known as the
multivariate Cauchy distribution.
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Second Example—t distribution iii

= The following side-by-side comparison may be helpful:
Let Z ~ N(0,1,), v >0, p € R? and A p X p and
positive definite.
o 4 AV2Z ~ Ny (p, A);
sy A+ VWAY2Z ~t,, (1, A), where WL ~ X2 (v).
= Finally, note that if Y ~ ¢,, (i, A), we have
= E(Y) = p, assuming v > 1;
» Cov (Y) = ;% A, assuming v > 2.
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library(mvtnorm)

n <- 1000

mu <- c(1, 2)

Sigma <- matrix(c(1, 0.5, 0.5, 1), ncol = 2)
# Recall the multivartiate case

Y norm <- rmvnorm(n, mean = mu, sigma = Sigma)
colMeans(Y_norm)

## [1] 1.010602 1.990707
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cov(Y_norm)

#it [,1] [,2]
## [1,] 0.9937129 0.5059292
## [2,] 0.5059292 0.9983259

# Now the t distribution
nu <- 4

Y t <- rmvt(n, sigma = Sigma, df

colMeans(Y_t)

= nu, delta = mu)
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## [1] 1.054561 2.041417

cov(Y_t)

#it [,1] [,2]
## [1,] 1.8399561 0.9004441
## [2,] 0.9004441 1.9164044
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data_plot <- rbind(
mutate(data.frame(Y_norm), dist = "normal"),
mutate(data.frame(Y_t), dist = "t")

ggplot (data_plot, aes(X1, X2)) +
geom_point(alpha = 0.25) +
geom_density_2d() +
facet_grid(~ dist, labeller = label_both)
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= Given a random sample Y4,...,Y, from an elliptical
distribution E, (1, A), we are interested in estimating s
and A.

» Recall that the sample mean and the sample covariance
are still consistent:

Y -
S, — aA.
= However, in general, they are no longer efficient.

= You can build estimators with smaller variance.
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» The log-likelihood for our random sample is
" _ n
O, A) =" log (g (Vi — )" AT (Y — u)))—§ log|A|.
i=1

= Differentiating with respect to 1 and A and setting the
derivatives equal to zero, we get a system of equations:

Z:u(si)A’l(Yi —u)=0

u(s)A™ (Vs — ) (Y: — p)TAT! = ZA7 =0,

DO | —

1=1
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where
u(s) = —24'(s)/g(s),
S; = (Yz — ,LL)TA_I(YZ' — /L)

= Therefore, the MLE estimators (if they exist!) satisfy the

following equations:

AT uls)
A 12 N R
A= - > u(s) (Y — ) (Y — )"

=1
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» In other words, the MLE are in general weighted sample
estimators.
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Additional comments

= The MLEs do not have a closed form solution.
= They must be computed using an iterative scheme.
» The existence and uniqueness of a solution to these
estimating equations is a difficult theoretical problem.
= Alternatively, one can use robust estimators that have
good properties for most elliptical distributions.
= E.g M-estimators and S-estimators.
= For details, see Chapter 13 of Theory of Multivariate
Statistics
= On the Bayesian side of estimation, there is in general no
closed form for the posterior distribution.
= But efficient MCMC strategies can be developed for
elliptical distributions.
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