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Objectives

• Introduce MANOVA as a generalization of Hotelling’s T 2

• Present the four classical test statistics
• Discuss approximations for their null distribution
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Quick Overview

What do we mean by Analysis of Variance?

• ANOVA is a collection of statistical models that aim to analyze
and understand the differences in means between different
subgroups of the data.

• As such, it can be seen as a generalisation of the t-test (or of
Hotelling’s T 2).

• Note that there could be multiple, overlapping ways of defining
the subgroups (e.g multiway ANOVA)

• It also provides a framework for hypothesis testing.
• Which can be recovered from a suitable regression model.

• Most importantly, ANOVA provides a framework for
understanding and comparing the various sources of variation
in the data.

3



Review of univariate ANOVA i

• Assume the data comes from g populations:

X11, . . . , X1n1
...

. . .
...

Xg1, . . . , Xgng

• Assume that Xℓ1, . . . , Xℓnℓ
is a random sample from

N(µℓ, σ2), for ℓ = 1, . . . , g.

• Homoscedasticity

• We are interested in testing the hypothesis that µ1 = . . . = µg .
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Review of univariate ANOVA ii

• Reparametrisation: We will write the mean µℓ = µ + τℓ as a
sum of an overall component µ (i.e. shared by all populations)
and a population-specific component τℓ.

• Our hypothesis can now be rewritten as τℓ = 0, for all ℓ.
• We can write our observations as

Xℓi = µ + τℓ + εℓi,

where εℓi ∼ N(0, σ2).
• Identifiability: We need to assume

∑g
ℓ=1 τℓ = 0, otherwise

there are infinitely many models that lead to the same
data-generating mechanism.

• Sample statistics: Set n = ∑g
ℓ=1 nℓ.
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Review of univariate ANOVA iii

• Overall sample mean: X̄ = 1
n

∑g
ℓ=1

∑nℓ
i=1 Xℓi.

• Population-specific sample mean: X̄ℓ = 1
nℓ

∑nℓ
i=1 Xℓi.

• We get the following decomposition:(
Xℓi − X̄

)
=
(
X̄ℓ − X̄

)
+
(
Xℓi − X̄ℓ

)
.

• Squaring the left-hand side and summing over both ℓ and i, we
get

g∑
ℓ=1

nℓ∑
i=1

(
Xℓi − X̄

)2
=

g∑
ℓ=1

nℓ

(
X̄ℓ − X̄

)2
+

g∑
ℓ=1

nℓ∑
i=1

(
Xℓi − X̄ℓ

)2
.

• This is typically summarised as SST = SSM + SSR:

• The total sum of squares: SST =
∑g

ℓ=1
∑nℓ

i=1

(
Xℓi − X̄

)2
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Review of univariate ANOVA iv

• The model (or treatment) sum of squares:
SSM =

∑g
ℓ=1 nℓ

(
X̄ℓ − X̄

)2

• The residual sum of squares:
SSR =

∑g
ℓ=1

∑nℓ
i=1

(
Xℓi − X̄ℓ

)2

• Yet another representation is the ANOVA table:

Source of Variation Sum of Squares Degrees of freedom
Model SSM g − 1
Residual SSR n − g

Total SST n − 1
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Review of univariate ANOVA v

• The usual test statistic used for testing τℓ = 0 for all ℓ is

F = SSM/(g − 1)
SSR/(n − g)

∼ F (g − 1, n − g).

• We could also instead reject the null hypothesis for small
values of

SSR

SSR + SSM

= SSR

SST

.

This is the test statistic that we will generalize to the multivariate
setting.
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Multivariate ANOVA i

• The setting is similar: Assume the data comes from g

populations:
Y11, . . . , Y1n1
...

. . .
...

Yg1, . . . , Ygng

• Assume that Yℓ1, . . . , Yℓnℓ
is a random sample from

Np(µℓ, Σ), for ℓ = 1, . . . , g.

• Homoscedasticity is key here again.

• We are again interested in testing the hypothesis that
µ1 = . . . = µg .

• Reparametrisation: We will write the mean as µℓ = µ + τℓ
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Multivariate ANOVA ii

• Yℓi = µ + τℓ + Eℓi, where Eℓi ∼ Np(0, Σ).

• Identifiability: We need to assume
∑g

ℓ=1 τℓ = 0.
• Instead of a decomposition of the sum of squares, we get a
decomposition of the outer product:

(Yℓi − Ȳ)(Yℓi − Ȳ)T .

• The decomposition is given as

g∑
ℓ=1

nℓ∑
i=1

(Yℓi − Ȳ)(Yℓi − Ȳ)T =
g∑

ℓ=1
nℓ(Ȳℓ − Ȳ)(Ȳℓ − Ȳ)T

+
g∑

ℓ=1

nℓ∑
i=1

(Yℓi − Ȳℓ)(Yℓi − Ȳℓ)T .
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Multivariate ANOVA iii

• Between sum of squares and cross products matrix:
B = ∑g

ℓ=1 nℓ(Ȳℓ − Ȳ)(Ȳℓ − Ȳ)T .

• Within sum of squares and cross products matrix:
W = ∑g

ℓ=1
∑nℓ

i=1(Yℓi − Ȳℓ)(Yℓi − Ȳℓ)T .

• Note that W = ∑g
ℓ=1(nℓ − 1)Sℓ, and therefore Wp(n − g, Σ).

• Moreover, using Cochran’s theorem, we can show that W and B

are independent, and that under the null hypothesis that
τℓ = 0 for all ℓ = 1, . . . , g, we also have

B ∼ Wp(g − 1, Σ).
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Multivariate ANOVA iv

• Similarly as above, we have a MANOVA table:

Source of Variation Sum of Squares Degrees of freedom
Model B g − 1
Residual W n − g

Total B + W n − 1
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Likelihood Ratio Test i

• To test the null hypothesis H0 : τℓ = 0 for all ℓ = 1, . . . , g, we
will use Wilk’s lambda as our test statistic:

Λ2/n = |W |
|B + W |

.

• As the notation suggests, this is the likelihood ratio test statistic.
• Under the unrestricted model (i.e. no constraint on the means),
each mean parameter is maximised independently, and the
maximum likelihood estimator for the covariance matrix is the
pooled covariance:

µ̂ℓ = Ȳℓ, Σ̂ = 1
n

W.
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Likelihood Ratio Test ii

• Under the null model (i.e. all means are equal), all observations
Yℓi come from a unique distribution Np(µ, Σ), and so the
maximum likelihood estimators are

µ̂ = Ȳ, Σ̂ = 1
n

(B + W ).

• Putting this together, we get

Λ =
(2π)−np/2 exp(−np/2)| 1

n
(B + W )|−n/2

(2π)−np/2 exp(−np/2)| 1
n
W |−n/2

=
| 1

n
(B + W )|−n/2

| 1
n
W |−n/2

=
(

|W |
|B + W |

)n/2

.
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Likelihood Ratio Test iii

• From the general asymptotic theory, we now that

−2 log Λ ≈ χ2((g − 1)p).

• Using Bartlett’s approximation, we can get an unbiased test:

−
(

n − 1 − 1
2

(p + g)
)

log Λ ≈ χ2((g − 1)p).

• In particular, if we let c = χ2
α((n − 1)p) be the critical value,

we reject the null hypothesis if

Λ ≤ exp
(

−c

n − 1 − 0.5(p + g)

)
.
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Example i

## Example on producing plastic film
## from Krzanowski (1998, p. 381)
tear <- c(6.5, 6.2, 5.8, 6.5, 6.5, 6.9, 7.2,

6.9, 6.1, 6.3, 6.7, 6.6, 7.2, 7.1,
6.8, 7.1, 7.0, 7.2, 7.5, 7.6)

gloss <- c(9.5, 9.9, 9.6, 9.6, 9.2, 9.1, 10.0,
9.9, 9.5, 9.4, 9.1, 9.3, 8.3, 8.4,
8.5, 9.2, 8.8, 9.7, 10.1, 9.2)

opacity <- c(4.4, 6.4, 3.0, 4.1, 0.8, 5.7, 2.0,
3.9, 1.9, 5.7, 2.8, 4.1, 3.8, 1.6,
3.4, 8.4, 5.2, 6.9, 2.7, 1.9)
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Example ii

Y <- cbind(tear, gloss, opacity)
Y_low <- Y[1:10,]
Y_high <- Y[11:20,]
n <- nrow(Y); p <- ncol(Y); g <- 2

W <- (nrow(Y_low) - 1)*cov(Y_low) +
(nrow(Y_high) - 1)*cov(Y_high)

B <- (n-1)*cov(Y) - W
(Lambda <- det(W)/det(W+B))

## [1] 0.4136192
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Example iii

transf_lambda <- -(n - 1 - 0.5*(p + g))*log(Lambda)
transf_lambda > qchisq(0.95, p*(g-1))

## [1] TRUE

# Or if you want a p-value
pchisq(transf_lambda, p*(g-1), lower.tail = FALSE)

## [1] 0.002227356
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Example iv

# R has a function for MANOVA
# But first, create factor variable
rate <- gl(g, 10, labels = c(”Low”, ”High”))

fit <- manova(Y ~ rate)
summary_tbl <- broom::tidy(fit, test = ”Wilks”)
# Or you can use the summary function

knitr::kable(summary_tbl, digits = 3)
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Example v

term df wilks statistic num.df den.df p.value

rate 1 0.414 7.561 3 16 0.002
Residuals 18 - - - - -
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Example vi

# Check residuals for evidence of normality
library(tidyverse)
resids <- residuals(fit)

data_plot <- gather(as.data.frame(resids),
variable, residual)

ggplot(data_plot, aes(sample = residual)) +
stat_qq() + stat_qq_line() +
facet_grid(. ~ variable) +
theme_minimal()
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Example vii
gloss opacity tear
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Example viii

# Next: Chi-squared plot
Sn <- cov(resids)
dists <- mahalanobis(resids, colMeans(resids), Sn)
df <- mean(dists)

qqplot(qchisq(ppoints(dists), df = df),
dists, xlab = ”Theoretical Quantiles”)

qqline(dists, distribution = function(p) {
qchisq(p, df = df)
})
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Example ix
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Comments i

• The output from R shows a different approximation to the Wilk’s
lambda distribution, due to Rao.

• There are actually 4 tests available in R:
• Wilk’s lambda;
• Pillai-Bartlett;
• Hotelling-Lawley;
• Roy’s Largest Root.
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Comments ii

• Since we only had two groups in the above example, we were
only comparing two means.

• Wilk’s lambda was therefore equivalent to Hotelling’s T 2.
• But of course MANOVA is much more general.

• We can assess the normality assumption by looking at the
residuals Eℓi = Yℓi − Ȳℓ.
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Other MANOVA Test Statistics i

• The Wilks’ lambda statistic can be expressed in terms of the
eigenvalues λ1, . . . , λs of the matrix W −1B, where
s = min(p, g − 1):

Λ2/n =
s∏

i=1

1
1 + λi

.
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Other MANOVA Test Statistics ii

• The four classical multivariate test statistics are:

Wilks’ lambda :
s∏

i=1

1
1 + λi

= |W |
|B + W |

Pillai’s trace :
s∑

i=1

λi

1 + λi

= tr
(
B(B + W )−1

)
Hotelling-Lawley trace :

s∑
i=1

λi = tr
(
W −1B

)
Roy’s largest root : λ1

1 + λ1
.
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Other MANOVA Test Statistics iii

• Under the null hypothesis, all four statistics can be
approximated using the F distribution.

• For one-way MANOVA with g = 2 groups, these tests are
actually all equivalent.

• In general, as the sample size increases, all four tests give
similar results. For finite sample size, Roy’s largest root has
good power only if the leading eigenvalue λ1 is significantly
larger than the other ones.
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Example i

knitr::kable(broom::tidy(fit), digits = 3)

term df pillai statistic num.df den.df p.value

rate 1 0.586 7.561 3 16 0.002
Residuals 18 - - - - -
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Example ii

knitr::kable(broom::tidy(fit, test = ”Hotelling-Lawley”),
digits = 3)

term df hl statistic num.df den.df p.value

rate 1 1.418 7.561 3 16 0.002
Residuals 18 - - - - -
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Strategy for Multivariate Comparison of Treatments

1. Try to identify outliers.

• This should be done graphically at first.
• Once the model is fitted, you can also look at influence
measures.

2. Perform a multivariate test of hypothesis.

3. If there is evidence of a multivariate difference, calculate
Bonferroni confidence intervals and investigate
component-wise differences.

• The projection of the confidence region onto each variable
generally leads to confidence intervals that are too large.
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