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Objectives

• Introduce the linear regression model for a multivariate
outcome

• Discuss inference for the regression parameters
• Discuss model selection
• Discuss influence measures
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Multivariate Linear Regression model

• We are interested in the relationship between p outcomes
Y1, . . . , Yp and q covariates X1, . . . , Xq .

• We will write Y = (Y1, . . . , Yp) and X = (1, X1, . . . , Xq).
• We will assume a linear relationship:

• E(Y | X) = BT X, where B is a (q + 1) × p matrix of
regression coefficients.

• We will also assume homoscedasticity:
• Cov(Y | X) = Σ, where Σ is positive-definite.
• In other words, the (conditional) covariance of Y does not
depend on X.
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Relationship with Univariate regression i

• Let σ2
i be the i-th diagonal element of Σ.

• Let βi be the i-th column of B.
• From the model above, we get p univariate regressions:

• E(Yi | X) = XT βi;
• Var(Yi | X) = σ2

i .

• However, we will use the correlation between outcomes for
hypothesis testing

• This follows from the assumption that each component Yi is
linearly associated with the same covariates X.
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Relationship with Univariate regression ii

• If we assumed a different set of covariates Xi for each outcome
Yi and still wanted to use the correlation between the
outcomes, we would get the Seemingly Unrelated Regressions
(SUR) model.

• This model is sometimes used by econometricians.
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Least-Squares Estimation i

• Let Y1 . . . , Yn be a random sample of size n, and let
X1, . . . , Xn be the corresponding sample of covariates.

• We will write Y and X for the matrices whose i-th row is Yi

and Xi, respectively.

• We can then write E(Y | X) = XB.

• For Least-Squares Estimation, we will be looking for the
estimator B̂ of B that minimises a least-squares criterion:

• LS(B) = tr
[
(Y − XB)T (Y − XB)

]
• Note: This criterion is also known as the (squared) Frobenius
norm; i.e. LS(B) = ∥Y − XB∥2

F .
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Least-Squares Estimation ii

• Note 2: If you expand the matrix product and look at the
diagonal, you can see that the Frobenius norm is equivalent to
the sum of the squared entries.

• To minimise LS(B), we could use matrix derivatives…
• Or, we can expand the matrix product along the diagonal and
compute the trace.

• Let Y(j) be the j-th column of Y.
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Least-Squares Estimation iii

• In other words, Y(j) = (Y1j , . . . , Ynj) contains the n values
for the outcome Yj . We then have

LS(B) = tr
[
(Y − XB)T (Y − XB)

]
=

p∑
j=1

(Y(j) − Xβj)T (Y(j) − Xβj)

=
p∑

j=1

n∑
i=1

(Yij − βT
j Xi)2.

• For each j , the sum
∑n

i=1(Yij − βT
j Xi)2 is simply the

least-squares criterion for the corresponding univariate linear
regression.
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Least-Squares Estimation iv

• β̂j = (XTX)−1XT Y(j)

• But since LS(B) is a sum of p positive terms, each minimised
at β̂j , the whole is sum is minimised at

B̂ =
(
β̂1 · · · β̂p

)
.

• Or put another way:

B̂ = (XTX)−1XTY.
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Comments i

• We still have not made any distributional assumptions on Y.

• We do not need to assume normality to derive the least-squares
estimator.

• The least-squares estimator is unbiased:

E(B̂ | X) = (XTX)−1XE(Y | X)
= (XTX)−1XTXB

= B.
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Comments ii

• We did not use the covariance matrix Σ anywhere in the
estimation process. But note that:

Cov(β̂i, β̂j) = Cov
(
(XTX)−1XT Y(i), (XTX)−1XT Y(j)

)
= (XTX)−1XT Cov

(
Y(i), Y(j)

) (
(XTX)−1XT

)T

= (XTX)−1XT (σijIn)X(XTX)−1

= σij(XTX)−1,

where σij is the (i, j)-th entry of Σ.
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Example i

# Let's revisit the plastic film data
library(heplots)
library(tidyverse)

Y <- Plastic %>%
select(tear, gloss, opacity) %>%
as.matrix

X <- model.matrix(~ rate, data = Plastic)
head(X)
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Example ii

## (Intercept) rateHigh
## 1 1 0
## 2 1 0
## 3 1 0
## 4 1 0
## 5 1 0
## 6 1 0

(B_hat <- solve(crossprod(X)) %*% t(X) %*% Y)
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Example iii

## tear gloss opacity
## (Intercept) 6.49 9.57 3.79
## rateHigh 0.59 -0.51 0.29

# Compare with lm output
fit <- lm(cbind(tear, gloss, opacity) ~ rate,

data = Plastic)
coef(fit)

## tear gloss opacity
## (Intercept) 6.49 9.57 3.79
## rateHigh 0.59 -0.51 0.29
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Geometry of LS i

• Let P = X(XTX)−1XT .
• P is symmetric and idempotent:

P 2 = X(XTX)−1XTX(XTX)−1XT = X(XTX)−1XT = P.

• Let Ŷ = XB̂ be the fitted values, and Ê = Y − Ŷ, the
residuals.

• We have Ŷ = PY.
• We also have Ê = (I − P )Y.
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Geometry of LS ii

• Putting all this together, we get

ŶT Ê = (PY)T (I − P )Y
= YT P (I − P )Y
= YT (P − P 2)Y
= 0.

• In other words, the fitted values and the residuals are
orthogonal.

• Similarly, we can see that XT Ê = 0 and PX = X.
• Interpretation: Ŷ is the orthogonal projection of Y onto the
column space of X.
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Example (cont’d) i

Y_hat <- fitted(fit)
residuals <- residuals(fit)

crossprod(Y_hat, residuals)

## tear gloss opacity
## tear 1.776357e-15 -1.998401e-15 1.776357e-15
## gloss -8.881784e-16 -1.998401e-15 -1.065814e-14
## opacity -4.440892e-16 -1.887379e-15 1.776357e-15

crossprod(X, residuals)
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Example (cont’d) ii

## tear gloss opacity
## (Intercept) 1.110223e-16 -3.330669e-16 -4.440892e-16
## rateHigh 3.330669e-16 -3.330669e-16 -4.440892e-16

# Is this really zero?
isZero <- function(mat) {

all.equal(mat, matrix(0, ncol = ncol(mat),
nrow = nrow(mat)),

check.attributes = FALSE)
}

isZero(crossprod(Y_hat, residuals))
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Example (cont’d) iii

## [1] TRUE

isZero(crossprod(X, residuals))

## [1] TRUE
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Maximum Likelihood Estimation i

• We now introduce distributional assumptions on Y:

Y | X ∼ Np(BT X, Σ).

• This is the same conditions on the mean and covariance as
above. The only difference is that we now assume the residuals
are normally distributed.

• Note: The distribution above is conditional on X. It could
happen that the marginal distribution of Y is not normal.
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Maximum Likelihood Estimation ii

• Theorem: Suppose X has full rank q + 1, and assume that
n ≥ q + p + 1. Then the least-squares estimator
B̂ = (XTX)−1XTY of B is also the maximum likelihood
estimator. Moreover, we have

1. B̂ is normally distributed.
2. The maximum likelihood estimator for Σ is Σ̂ = 1

n Ê
T Ê.

3. nΣ̂ follows a Wishart distribution Wp(n − q − 1, Σ) on
n − q − 1 degrees of freedom.

4. The maximised likelihood is
L(B̂, Σ̂) = (2π)−np/2|Σ̂|−n/2 exp(−pn/2).
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Maximum Likelihood Estimation iii

• Note: Looking at the degrees of freedom of the Wishart
distribution, we can infer that Σ̂ is a biased estimator of Σ. An
unbiased estimator is

S = 1
n − q − 1

ÊT Ê.
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Example i

library(heplots)

head(NLSY)

## math read antisoc hyperact income educ
## 1 50.00 45.24 4 3 52.518 14
## 2 28.57 28.57 0 0 42.600 12
## 3 50.00 53.57 2 2 50.000 12
## 4 32.14 34.52 0 2 6.082 12
## 5 21.43 22.62 0 2 7.410 14
## 6 15.48 40.48 1 0 12.988 12
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Example ii

# Fit model and look at coefficients
fit <- lm(cbind(math, read) ~ income + educ,

data = NLSY)

coef(fit)

## math read
## (Intercept) 8.7828704 15.88479888
## income 0.0893217 0.01366238
## educ 1.2755492 0.94949980
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Example iii

range(NLSY$income)

## [1] 0.000 146.942

range(NLSY$educ)

## [1] 6 20
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Confidence and Prediction Regions i

• Suppose we have a new observation X0. We are interested in
making predictions and inference about the corresponding
outcome vector Y0.

• First, since B̂ is an unbiased estimator of B, we see that

E(XT
0 B̂) = XT

0 E(B̂) = XT
0 B = E(Y0).

Therefore, it makes sense to estimate Y0 using XT
0 B̂.

• What is the estimation error? Let’s look at the covariance of
XT

0 β̂i and XT
0 β̂j

Cov
(
XT

0 β̂i, XT
0 β̂j

)
= XT

0 Cov
(
β̂i, β̂j

)
X0

= σijXT
0 (XTX)−1X0.
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Confidence and Prediction Regions ii

• What is the forecasting error? In that case, we also need to take
into account the extra variation coming from the residuals.

• In other words, we also need to sample a new “error” term
E0 = (E01, . . . , E0p) independently of X0.

• Let Ỹ0 = XT
0 B + E0 be the new value.

• The forecast error is given by

Ỹ0 − XT
0 B̂ = E0 − XT

0 (B̂ − B).

• Since E(Ỹ0 − XT
0 B̂) = 0, we can still deduce that XT

0 B̂ is
an unbiased predictor of Y0.
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Confidence and Prediction Regions iii

• Now let’s look at the covariance of the forecast errors in each
component:

E
[(

Ỹ0i − XT
0 β̂i

) (
Ỹ0j − XT

0 β̂j

)]
= E

[(
E0i − XT

0 (β̂i − βi)
) (

E0j − XT
0 (β̂j − βj)

)]
= E(E0iE0j) + XT

0 E
[
(β̂i − βi)(β̂j − βj)

]
X0

= σij + σijXT
0 (XTX)−1X0

= σij

(
1 + XT

0 (XTX)−1X0
)

.

• Therefore, we can see that the difference between the
estimation error and the forecasting error is σij .
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Example i

# Recall our model for Plastic
fit <- lm(cbind(tear, gloss, opacity) ~ rate,

data = Plastic)

new_x <- data.frame(rate = factor(”High”,
levels = c(”Low”,

”High”)))
(prediction <- predict(fit, newdata = new_x))

## tear gloss opacity
## 1 7.08 9.06 4.08
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Example ii

X <- model.matrix(fit)
S <- crossprod(resid(fit))/(nrow(Plastic) - ncol(X))
new_x <- model.matrix(~rate, new_x)

quad_form <- drop(new_x %*% solve(crossprod(X)) %*%
t(new_x))

# Estimation covariance
(est_cov <- S * quad_form)
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Example iii

## tear gloss opacity
## tear 0.014027778 0.003994444 -0.006083333
## gloss 0.003994444 0.021027778 0.014716667
## opacity -0.006083333 0.014716667 0.409916667

# Forecasting covariance
(fct_cov <- S *(1 + quad_form))

## tear gloss opacity
## tear 0.15430556 0.04393889 -0.06691667
## gloss 0.04393889 0.23130556 0.16188333
## opacity -0.06691667 0.16188333 4.50908333
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Example iv

# Estimation CIs
cbind(drop(prediction) - 1.96*sqrt(diag(est_cov)),

drop(prediction) + 1.96*sqrt(diag(est_cov)))

## [,1] [,2]
## tear 6.847860 7.312140
## gloss 8.775781 9.344219
## opacity 2.825115 5.334885

# Forecasting CIs
cbind(drop(prediction) - 1.96*sqrt(diag(fct_cov)),

drop(prediction) + 1.96*sqrt(diag(fct_cov)))
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Example v

## [,1] [,2]
## tear 6.31007778 7.849922
## gloss 8.11735297 10.002647
## opacity -0.08198204 8.241982
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Likelihood Ratio Tests i

• We can use a Likelihood Ratio test to assess the evidence in
support of two nested models.

• Write

B =

B1

B2

 , X =
(
X1 X2

)
,

where B1 is (r + 1) × p, B2 is (q − r) × p, X1 is n × (r + 1),
X2 is n × (q − r), and r ≥ 0 is a non-negative integer.
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Likelihood Ratio Tests ii

• We want to compare the following models:

Full model : E(Y | X) = BT X
Nested model : E(Y | X1) = BT

1 X1

• According to our previous theorem, the corresponding
maximised likelihoods are

Full model : L(B̂, Σ̂) = (2π)−np/2|Σ̂|−n/2 exp(−pn/2)
Nested model : L(B̂1, Σ̂1) = (2π)−np/2|Σ̂1|−n/2 exp(−pn/2)
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Likelihood Ratio Tests iii

• Therefore, taking the ratio of the likelihoods of the nested
model to the full model, we get

Λ = L(B̂1, Σ̂1)
L(B̂, Σ̂)

=

 |Σ̂|
|Σ̂1|

n/2

.

• Or equivalently, we get Wilks’ lambda statistic:

Λ2/n = |Σ̂|
|Σ̂1|

.

• As discussed in the lecture on MANOVA, there is no closed-form
solution for the distribution of this statistic under the null
hypothesis H0 : B2 = 0, but there are many approximations.
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Likelihood Ratio Tests iv

• Two important special cases:

• When r = 0, we are testing the full model against the empty
model (i.e. only the intercept).

• When X2 only contains one covariate, we are testing the full
model against a simpler model without that covariate. In other
words, we are testing for the significance of that covariate.
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Other Multivariate Test Statistics i

• The Wilks’ lambda statistic can actually be expressed in terms
of the (generalized) eigenvalues of a pair of matrices (H, E):

• E = nΣ̂ is the error matrix.
• H = n(Σ̂1 − Σ̂) is the hypothesis matrix.

• Under our assumptions about the rank of X and the sample
size, E is (almost surely) invertible, and therefore we can look
at the nonzero eigenvalues of HE−1:

• Let η1 ≥ · · · ≥ ηs be those nonzero eigenvalues, where
s = min(p, q − r).

• Equivalently, these eigenvalues are the nonzero roots of the
determinantal equation det

(
(Σ̂1 − Σ̂) − ηΣ̂

)
= 0.

38



Other Multivariate Test Statistics ii

• Recall the four classical multivariate test statistics:

Wilks’ lambda :
s∏

i=1

1
1 + ηi

= |E|
|E + H|

Pillai’s trace :
s∑

i=1

ηi

1 + ηi

= tr
(
H(H + E)−1

)
Hotelling-Lawley trace :

s∑
i=1

ηi = tr
(
HE−1

)
Roy’s largest root : η1

1 + η1

• Under the null hypothesis H0 : B2 = 0, all four statistics can
be well-approximated using the F distribution.
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Other Multivariate Test Statistics iii

• Note: When r = q − 1, all four tests are equivalent.
• In general, as the sample size increases, all four tests give
similar results. For finite sample size, Roy’s largest root has
good power only if there the leading eigenvalue η1 is
significantly larger than the other ones.
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Example i

# Going back to our NLSY example
full_model <- lm(cbind(math, read) ~ income + educ +

antisoc + hyperact,
data = NLSY)

library(pander)
pander(anova(full_model, test = ”Wilks”))
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Example ii

Df Wilks
approx
F

num
Df den Df Pr(>F)

(Intercept) 1 0.09 1243.04 2 237 0.00
income 1 0.93 9.19 2 237 0.00
educ 1 0.95 6.57 2 237 0.00
antisoc 1 0.99 1.16 2 237 0.31
hyperact 1 0.99 1.74 2 237 0.18
Residuals 238 NA NA NA NA NA
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Example iii

pander(anova(full_model, test = ”Roy”))

Df Roy
approx
F

num
Df den Df Pr(>F)

(Intercept) 1 10.49 1243.04 2 237 0.00
income 1 0.08 9.19 2 237 0.00
educ 1 0.06 6.57 2 237 0.00
antisoc 1 0.01 1.16 2 237 0.31
hyperact 1 0.01 1.74 2 237 0.18
Residuals 238 NA NA NA NA NA
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Example iv

# Visualize the error and hypothesis ellipses
heplot(full_model)
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Example v
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Example vi

# Fit a model with only income and educ
rest_model <- lm(cbind(math, read) ~ income + educ,

data = NLSY)

pander(anova(full_model, rest_model,
test = ”Wilks”))

Res.Df Df Gen.var. Wilks
approx
F

num
Df den Df Pr(>F)

238 NA 82.87 NA NA NA NA NA
240 2 83.18 0.98 1.44 4 474 0.22
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Example vii

pander(anova(full_model, rest_model,
test = ”Roy”))

Res.Df Df Gen.var. Roy
approx
F

num
Df den Df Pr(>F)

238 NA 82.87 NA NA NA NA NA
240 2 83.18 0.02 2.64 2 238 0.07
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Example viii

# Let's look at the eigenvalues
E <- crossprod(residuals(full_model))
H <- crossprod(residuals(rest_model)) - E

result <- eigen(H %*% solve(E),
only.values = TRUE)

result$values[seq_len(2)]

## [1] 0.022196515 0.002277582
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Information Criteria i

• We can use hypothesis testing for model building:

• Add covariates that significantly improve the model (forward
selection);

• Remove non-significant covariates (backward elimination).

• Another approach is to use Information Criteria.
• The general form of Akaike’s information criterion:

−2 log L(B̂, Σ̂) + 2d,

where d is the number of parameters to estimate.

• In multivariate regression, this would be
d = (q + 1)p + p(p + 1)/2.
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Information Criteria ii

• Therefore, we get (up to a constant):

AIC = n log|Σ̂| + 2(q + 1)p + p(p + 1).

• The intuition behind AIC is that it estimates the Kullback-Leibler
divergence between the posited model and the true
data-generating mechanism.

• So smaller is better.

• Model selection using information criteria proceeds as follows:

1. Select models of interest {M1, . . . , MK}. They do not need to
be nested, and they do not need to involve the same variables.

2. Compute the AIC for each model.
3. Select the model with the smallest AIC.
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Information Criteria iii

• The set of interesting models should be selected using
domain-specific knowledge when possible.

• If it is not feasible, you can look at all possible models between
the empty model and the full model.

• There are many variants of AIC, each with their own trade-offs.

• For more details, see Timm (2002) Section 4.2.d.
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Example (cont’d) i

## AIC(full_model)
# Error in logLik.lm(full_model) :
# 'logLik.lm' does not support multiple responses
class(full_model)

## [1] ”mlm” ”lm”
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Example (cont’d) ii

logLik.mlm <- function(object, ...) {
resids <- residuals(object)
Sigma_ML <- crossprod(resids)/nrow(resids)
ans <- sum(mvtnorm::dmvnorm(resids, log = TRUE,

sigma = Sigma_ML))
df <- prod(dim(coef(object))) +

choose(ncol(Sigma_ML) + 1, 2)
attr(ans, ”df”) <- df
class(ans) <- ”logLik”
return(ans)

}
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Example (cont’d) iii

logLik(full_model)

## 'log Lik.' -1757.947 (df=13)

AIC(full_model)

## [1] 3541.894

AIC(rest_model)

## [1] 3539.781
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Example of model selection i

# Model selection for Plastic data
lhs <- ”cbind(tear, gloss, opacity) ~”
rhs_form <- c(”1”, ”rate”, ”additive”,

”rate+additive”, ”rate*additive”)

purrr::map_df(rhs_form, function(rhs) {
form <- formula(paste(lhs, rhs))
fit <- lm(form, data = Plastic)
return(data.frame(model = rhs, aic = AIC(fit),

stringsAsFactors = FALSE))
})
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Example of model selection ii

## model aic
## 1 1 155.4330
## 2 rate 143.7768
## 3 additive 150.9542
## 4 rate+additive 137.9592
## 5 rate*additive 138.9157
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Multivariate Influence Measures i

• Earlier we introduced the projection matrix

P = X(XTX)−1XT

and we noted that Ŷ = PY.
• Looking at one row at a time, we can see that

Ŷi =
n∑

j=1
PijYj

= PiiYi +
∑
j ̸=i

PijYi,

where Pij is the (i, j)-th entry of P .
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Multivariate Influence Measures ii

• In other words, the diagonal element Pii represents the
leverage (or influence) of observation Yi on the fitted value Ŷi.

• Observation Yi is said to have a high leverage if Pii is large
compared to the other element on the diagonal.

• Let S = 1
n−q−1Ê

T Ê be the unbiased estimator of Σ, and let
Êi be the i-th row of Ê.

• We define the multivariate internally Studentized residuals as
follows:

ri = ÊT
i S−1Êi

1 − Pii

.
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Multivariate Influence Measures iii

• If we let S(i) be the estimator of Σ where we have removed row
i from the residual matrix Ê, we define the multivariate
externally Studentized residuals as follows:

T 2
i =

ÊT
i S−1

(i) Êi

1 − Pii

.

• An observation Yi may be considered a potential outlier if(
n − q − p − 1
p(n − q − 2)

)
T 2

i > Fα(p, n − q − 2).
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Multivariate Influence Measures iv

• Yet another measure of influence is the multivariate Cook’s
distance.

Ci = Pii

(1 − Pii)2 ÊT
i S−1Êi/(q + 1).

• An observation Yi may be considered a potential outlier if Ci

is larger than the median of a chi square distribution with
ν = p(n − q − 1) degrees of freedom.
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Example i

library(openintro)
model <- lm(cbind(startPr, totalPr) ~

nBids + cond + sellerRate +
wheels + stockPhoto,

data = marioKart)

X <- model.matrix(model)
P <- X %*% solve(crossprod(X)) %*% t(X)
lev_values <- diag(P)

hist(lev_values, 50)
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Example ii
Histogram of lev_values
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Example iii

n <- nrow(marioKart)
resids <- residuals(model)
S <- crossprod(resids)/(n - ncol(X))

S_inv <- solve(S)

const <- lev_values/((1 - lev_values)^2*ncol(X))
cook_values <- const * diag(resids %*% S_inv

%*% t(resids))

hist(cook_values, 50)
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Example iv
Histogram of cook_values
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Example v

# Cut-off value
(cutoff <- qchisq(0.5, ncol(S)*(n - ncol(X))))

## [1] 273.3336

which(cook_values > cutoff)

## named integer(0)
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Strategy for Multivariate Model Building

1. Try to identify outliers.

• This should be done graphically at first.
• Once the model is fitted, you can also look at influence
measures.

2. Perform a multivariate test of hypothesis.

3. If there is evidence of a multivariate difference, calculate
Bonferroni confidence intervals and investigate
component-wise differences.

• The projection of the confidence region onto each variable
generally leads to confidence intervals that are too large.
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Multivariate Regression and MANOVA i

• Recall from our lecture on MANOVA: assume the data comes
from g populations:

Y11, . . . , Y1n1
...

. . .
...

Yg1, . . . , Ygng

,

where Yℓ1, . . . , Yℓnℓ
∼ Np(µℓ, Σ).
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Multivariate Regression and MANOVA ii

• We obtain an equivalent model if we set

Y =



Y11
...

Y1n1
...

Yg1
...

Ygng


, X =



1 1 0 · · · 0
...

...
...

. . .
...

1 1 0 · · · 0
1 0 1 · · · 0
...

...
...

. . .
...

1 0 1 · · · 0
1 0 0 · · · 0
...

...
...

. . .
...

1 0 0 · · · 0



.
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• Here, Y is n × p and X is n × g.

• The first column of X is all ones.
• The (i, ℓ + 1) entry of X is 1 iff the i-th row belongs to the ℓ-th
group.

• Note: It is common to have a different constraint on the
parameters τℓ in regression; here, we assume that τg = 0.

• In other words, we model group membership using a single
categorial covariate and therefore g − 1 dummy variables.

• More complicated designs for MANOVA can also be expressed in
terms of linear regression:
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• For example, for two-way MANOVA, we would have two
categorical variables. We would also need to include an
interaction term to get all combinations of the two treatments.

• In general, fractional factorial designs can be expressed as a
linear regression with a carefully selected series of dummy
variables.

70


