Multivariate Normal Distribution

Max Turgeon

STAT 7200-Multivariate Statistics

Building the multivariate density i

Let $Z \sim N(0,1)$ be a standard (univariate) normal random variable. Recall that its density is given by

$$\phi(z) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{1}{2}z^2\right).$$

Now if we take $Z_1,\dots,Z_p\sim N(0,1)$ independently distributed, their joint density is

Building the multivariate density i

$$\phi(z_1, \dots, z_p) = \prod_{i=1}^p \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{1}{2}z_i^2\right)$$
$$= \frac{1}{(\sqrt{2\pi})^p} \exp\left(-\frac{1}{2}\sum_{i=1}^p z_i^2\right)$$
$$= \frac{1}{(\sqrt{2\pi})^p} \exp\left(-\frac{1}{2}\mathbf{z}^T\mathbf{z}\right),$$

where $\mathbf{z} = (z_1, \dots, z_p)$.

• More generally, let $\mu \in \mathbb{R}^p$ and let Σ be a $p \times p$ positive definite matrix.

Building the multivariate density iii

- Let $\Sigma = LL^T$ be the Cholesky decomposition for Σ .
- Let $\mathbf{Z} = (Z_1, \dots, Z_p)$ be a standard (multivariate) normal random vector, and define $\mathbf{Y} = L\mathbf{Z} + \mu$. We know from a previous lecture that
 - $E(\mathbf{Y}) = LE(\mathbf{Z}) + \mu = \mu$;
 - $Cov(\mathbf{Y}) = LCov(\mathbf{Z})L^T = \Sigma.$
- To get the density, we need to compute the inverse transformation:

$$\mathbf{Z} = L^{-1}(\mathbf{Y} - \mu).$$

Building the multivariate density iv

• The Jacobian matrix J for this transformation is simply L^{-1} , and therefore

$$\begin{split} |\mathrm{det}(J)| &= |\mathrm{det}(L^{-1})| \\ &= \mathrm{det}(L)^{-1} \qquad \text{(positive diagonal elements)} \\ &= \sqrt{\mathrm{det}(\Sigma)}^{-1} \\ &= \mathrm{det}(\Sigma)^{-1/2}. \end{split}$$

Building the multivariate density v

 Plugging this into the formula for the density of a transformation, we get

$$f(y_1, \dots, y_p) = \frac{1}{\det(\Sigma)^{1/2}} \phi(L^{-1}(\mathbf{y} - \mu))$$

$$= \frac{1}{\det(\Sigma)^{1/2}} \left(\frac{1}{(\sqrt{2\pi})^p} \exp\left(-\frac{1}{2} (L^{-1}(\mathbf{y} - \mu))^T L^{-1}(\mathbf{y} - \mu)\right) \right)$$

$$= \frac{1}{\det(\Sigma)^{1/2} (\sqrt{2\pi})^p} \exp\left(-\frac{1}{2} (\mathbf{y} - \mu)^T (LL^T)^{-1} (\mathbf{y} - \mu)\right)$$

$$= \frac{1}{\sqrt{(2\pi)^p |\Sigma|}} \exp\left(-\frac{1}{2} (\mathbf{y} - \mu)^T \Sigma^{-1} (\mathbf{y} - \mu)\right).$$

Example i

```
set.seed(123)

n <- 1000; p <- 2
Z <- matrix(rnorm(n*p), ncol = p)

mu <- c(1, 2)
Sigma <- matrix(c(1, 0.5, 0.5, 1), ncol = 2)
L <- t(chol(Sigma))</pre>
```

Example ii

```
Y \leftarrow L \% * (Z) + mu
Y \leftarrow t(Y)
colMeans(Y)
## [1] 1.016128 2.044840
cov(Y)
               [,1] \qquad [,2]
##
## [1,] 0.9834589 0.5667194
## [2,] 0.5667194 1.0854361
```

Example iii

```
library(tidyverse)
Y %>%
  data.frame() %>%
  ggplot(aes(X1, X2)) +
  geom_density_2d()
```

Example iv

Example v

```
library(mvtnorm)
Y <- rmvnorm(n, mean = mu, sigma = Sigma)
colMeans(Y)
## [1] 0.9812102 1.9829380
cov(Y)
```

Example vi

```
## [,1] [,2]
## [1,] 0.9982835 0.4906990
## [2,] 0.4906990 0.9489171

Y %>%
   data.frame() %>%
   ggplot(aes(X1, X2)) +
   geom_density_2d()
```

Example vii

Characteristic function i

- Using a similar strategy, we can derive the characteristic function of the multivariate normal distribution.
- Recall that the characteristic function of the univariate standard normal distribution is given by

$$\varphi(t) = \exp\left(\frac{-t^2}{2}\right).$$

Characteristic function ii

■ Therefore, if we have $Z_1, \ldots, Z_p \sim N(0,1)$ independent, the characteristic function of $\mathbf{Z} = (Z_1, \ldots, Z_p)$ is

$$\varphi_{\mathbf{Z}}(\mathbf{t}) = \prod_{i=1}^{p} \exp\left(\frac{-t_i^2}{2}\right)$$
$$= \exp\left(\sum_{i=1}^{p} \frac{-t_i^2}{2}\right)$$
$$= \exp\left(\frac{-\mathbf{t}^T \mathbf{t}}{2}\right).$$

Characteristic function iii

For $\mu \in \mathbb{R}^p$ and $\Sigma = LL^T$ positive definite, define $\mathbf{Y} = L\mathbf{Z} + \mu$. We then have

$$\begin{split} \varphi_{\mathbf{Y}}(\mathbf{t}) &= \exp\left(i\mathbf{t}^T \boldsymbol{\mu}\right) \varphi_{\mathbf{Z}}(L^T \mathbf{t}) \\ &= \exp\left(i\mathbf{t}^T \boldsymbol{\mu}\right) \exp\left(\frac{-(L^T \mathbf{t})^T (L^T \mathbf{t})}{2}\right) \\ &= \exp\left(i\mathbf{t}^T \boldsymbol{\mu} - \frac{\mathbf{t}^T \boldsymbol{\Sigma} \mathbf{t}}{2}\right). \end{split}$$

Alternative characterization

A p-dimensional random vector \mathbf{Y} is said to have a multivariate normal distribution if and only if every linear combination of \mathbf{Y} has a *univariate* normal distribution. - **Note**: In particular, every component of \mathbf{Y} is also normally distributed.

Proof i

This result follows from the Cramer-Wold theorem. Let $\mathbf{u} \in \mathbb{R}^p$. We have

$$\varphi_{\mathbf{u}^T \mathbf{Y}}(t) = \varphi_{\mathbf{Y}}(t\mathbf{u})$$
$$= \exp\left(it\mathbf{u}^T \mu - \frac{\mathbf{u}^T \Sigma \mathbf{u} t^2}{2}\right).$$

This is the characteristic function of a univariate normal variable with mean $\mathbf{u}^T \mu$ and variance $\mathbf{u}^T \Sigma \mathbf{u}$.

Proof ii

Conversely, assume \mathbf{Y} has mean μ and Σ , and assume $\mathbf{u}^T\mathbf{Y}$ is normally distributed for all $\mathbf{u} \in \mathbb{R}^p$. In particular, we must have

$$\varphi_{\mathbf{u}^T \mathbf{Y}}(t) = \exp\left(it\mathbf{u}^T \mu - \frac{\mathbf{u}^T \Sigma \mathbf{u} t^2}{2}\right).$$

Now, let's look at the characteristic function of Y:

Proof iii

$$\varphi_{\mathbf{Y}}(\mathbf{t}) = E\left(\exp\left(i\mathbf{t}^{T}\mathbf{Y}\right)\right)$$

$$= E\left(\exp\left(i(\mathbf{t}^{T}\mathbf{Y})\right)\right)$$

$$= \varphi_{\mathbf{t}^{T}\mathbf{Y}}(1)$$

$$= \exp\left(i\mathbf{t}^{T}\mu - \frac{\mathbf{t}^{T}\Sigma\mathbf{t}}{2}\right).$$

This is the characteristic function we were looking for.

Counter-Example i

- Let Y be a mixture of two multivariate normal distributions Y₁, Y₂ with mixing probability p.
- Assume that

$$\mathbf{Y}_i \sim N_p(0, (1 - \rho_i)I_p + \rho_i \mathbf{1}\mathbf{1}^{\mathbf{T}}),$$

where $\mathbf{1}$ is a p-dimensional vector of $\mathbf{1}$ s.

• In other words, the diagonal elements are 1, and the off-diagonal elements are ρ_i .

Counter-Example ii

 First, note that the characteristic function of a mixture distribution is a mixture of the characteristic functions:

$$\varphi_{\mathbf{Y}}(\mathbf{t}) = p\varphi_{\mathbf{Y}_1}(\mathbf{t}) + (1-p)\varphi_{\mathbf{Y}_2}(\mathbf{t}).$$

- Therefore, unless p = 0, 1 or $\rho_1 = \rho_2$, the random vector \mathbf{Y} does **not** follow a normal distribution.
- But the components of a mixture are the mixture of each component.
 - Therefore, all components of Y are univariate standard normal variables.

Counter-Example iii

• In other words, even if all the margins are normally distributed, the joint distribution may not follow a multivariate normal.

Useful properties i

 \bullet If $\mathbf{Y} \sim N_p(\mu, \Sigma)$, A is a $q \times p$ matrix, and $b \in \mathbb{R}^q$, then

$$A\mathbf{Y} + b \sim N_q(A\mu + b, A\Sigma A^T).$$

- If $\mathbf{Y} \sim N_p(\mu, \Sigma)$ then all subsets of \mathbf{Y} are normally distributed; that is, write
 - $\bullet \quad \mathbf{Y} = \begin{pmatrix} \mathbf{Y}_1 \\ \mathbf{Y}_2 \end{pmatrix}, \ \mu = \begin{pmatrix} \mu_1 \\ \mu_2 \end{pmatrix};$

 - Then $\mathbf{Y}_1 \sim N_r(\mu_1, \Sigma_{11})$ and $\mathbf{Y}_2 \sim N_{p-r}(\mu_2, \Sigma_{22})$.

Useful properties ii

- Assume the same partition as above. Then the following are equivalent:
 - \mathbf{Y}_1 and \mathbf{Y}_2 are independent;
 - $\Sigma_{12} = 0$;
 - $\bullet \quad \text{Cov}(\mathbf{Y}_1, \mathbf{Y}_2) = 0.$

Exercise (J&W 4.3)

Let $(Y_1, Y_2, Y_3) \sim N_3(\mu, \Sigma)$ with $\mu = (3, 1, 4)$ and

$$\Sigma = \begin{pmatrix} 1 & -2 & 0 \\ -2 & 5 & 0 \\ 0 & 0 & 2 \end{pmatrix}.$$

Which of the following random variables are independent? Explain.

- 1. Y_1 and Y_2 .
- 2. Y_2 and Y_3 .
- 3. (Y_1, Y_2) and Y_3 .
- 4. $0.5(Y_1 + Y_2)$ and Y_3 .
- 5. Y_2 and $Y_2 \frac{5}{2}Y_1 Y_3$.

Conditional Normal Distributions i

• Theorem: Let $\mathbf{Y} \sim N_p(\mu, \Sigma)$, where

$$\mathbf{Y} = \begin{pmatrix} \mathbf{Y}_1 \\ \mathbf{Y}_2 \end{pmatrix}, \ \mu = \begin{pmatrix} \mu_1 \\ \mu_2 \end{pmatrix};$$

■ Then the *conditional distribution* of \mathbf{Y}_1 given $\mathbf{Y}_2 = \mathbf{y}_2$ is multivariate normal $N_r(\mu_{1|2}, \Sigma_{1|2})$, where

•
$$\mu_{1|2} = \mu_1 + \Sigma_{12} \Sigma_{22}^{-1} (\mathbf{y}_2 - \mu_2)$$

Proof i

Let B be a matrix of the same dimension as Σ_{12} . We will look at the following linear transformation of Y:

$$\begin{pmatrix} I & -B \\ 0 & I \end{pmatrix} \mathbf{Y} = \begin{pmatrix} \mathbf{Y}_1 - B\mathbf{Y}_2 \\ \mathbf{Y}_2 \end{pmatrix}.$$

Using the properties of the mean, we have

$$\begin{pmatrix} I & -B \\ 0 & I \end{pmatrix} \mu = \begin{pmatrix} \mu_1 - B\mu_2 \\ \mu_2 \end{pmatrix}.$$

Proof ii

Similarly, using the properties of the covariance, we have

$$\begin{pmatrix} I & -B \\ 0 & I \end{pmatrix} \begin{pmatrix} \Sigma_{11} & \Sigma_{12} \\ \Sigma_{21} & \Sigma_{22} \end{pmatrix} \begin{pmatrix} I & 0 \\ -B^T & I \end{pmatrix}$$
$$= \begin{pmatrix} \Sigma_{11} - B\Sigma_{21} - \Sigma_{12}B^T + B\Sigma_{22}B^T & \Sigma_{12} - B\Sigma_{22} \\ \Sigma_{21} - \Sigma_{22}B^T & \Sigma_{22} \end{pmatrix}.$$

Proof iii

Recall that subsets of a multivariate normal variable are again multivariate normal:

$$\mathbf{Y}_{1} - B\mathbf{Y}_{2} \sim N\left(\mu_{1} - B\mu_{2}, \Sigma_{11} - B\Sigma_{21} - \Sigma_{12}B^{T} + B\Sigma_{22}B^{T}\right),$$

 $\mathbf{Y}_{2} \sim N(\mu_{2}, \Sigma_{22}).$

If we take $B=\Sigma_{12}\Sigma_{22}^{-1}$, the two off-diagonal blocks of the covariance matrix above become 0. This implies that $\mathbf{Y}_1-B\mathbf{Y}_2$ is independent of \mathbf{Y}_2 .

Proof iv

Given $B = \Sigma_{12}\Sigma_{22}^{-1}$, we can deduce that

$$\mathbf{Y}_1 - \Sigma_{12} \Sigma_{22}^{-1} \mathbf{Y}_2 \sim N \left(\mu_1 - \Sigma_{12} \Sigma_{22}^{-1} \mu_2, \Sigma_{1|2} \right),$$

where

$$\Sigma_{1|2} = \Sigma_{11} - \Sigma_{12} \Sigma_{22}^{-1} \Sigma_{21}.$$

Using the fact that $\mathbf{Y}_1 - \Sigma_{12}\Sigma_{22}^{-1}\mathbf{Y}_2$ and \mathbf{Y}_2 are independent, we can conclude that

$$\mathbf{Y}_1 - \Sigma_{12}\Sigma_{22}^{-1}\mathbf{Y}_2 = \mathbf{Y}_1 - \Sigma_{12}\Sigma_{22}^{-1}\mathbf{y}_2 \mid \mathbf{Y}_2 = \mathbf{y}_2.$$

Proof v

Finally, by adding $\Sigma_{12}\Sigma_{22}^{-1}\mathbf{y}_2$ to the right-hand side, we get

$$\mathbf{Y}_1 \mid \mathbf{Y}_2 = \mathbf{y}_2 \sim N\left(\mu_1 + \Sigma_{12}\Sigma_{22}^{-1}(\mathbf{y}_2 - \mu_2), \Sigma_{1|2}\right).$$

.

Conditional Normal Distributions ii

■ Theorem: Let $\mathbf{Y}_2 \sim N_{p-r}(\mu_2, \Sigma_{22})$ and assume that \mathbf{Y}_1 given $\mathbf{Y}_2 = \mathbf{y}_2$ is multivariate normal $N_r(A\mathbf{y}_2 + b, \Omega)$, where Ω does not depend on \mathbf{y}_2 . Then

$$\mathbf{Y} = egin{pmatrix} \mathbf{Y}_1 \\ \mathbf{Y}_2 \end{pmatrix} \sim N_p(\mu, \Sigma)$$
 , where

$$\mu = \begin{pmatrix} A\mu_2 + b \\ \mu_2 \end{pmatrix};$$

$$\Sigma = \begin{pmatrix} \Omega + A\Sigma_{22}A^T & A\Sigma_{22} \\ \Sigma_{22}A^T & \Sigma_{22} \end{pmatrix}.$$

Proof: Exercise (e.g. compute joint density).

Exercise

• Let $\mathbf{Y}_2 \sim N_1(0,1)$ and assume

$$\mathbf{Y}_1 \mid \mathbf{Y}_2 = y_2 \sim N_2 \left(\begin{pmatrix} y_2 + 1 \\ 2y_2 \end{pmatrix}, I_2 \right).$$

Find the joint distribution of $(\mathbf{Y}_1, \mathbf{Y}_2)$.

Another important result i

- Let $\mathbf{Y} \sim N_p(\mu, \Sigma)$, and let $\Sigma = LL^T$ be the Cholesky decomposition of Σ .
- We know that $\mathbf{Z} = L^{-1}(\mathbf{Y} \mu)$ is normally distributed, with mean 0 and covariance matrix

$$Cov(\mathbf{Z}) = L^{-1}\Sigma(L^{-1})^T = I_p.$$

- Therefore $(\mathbf{Y} \mu)^T \Sigma^{-1} (\mathbf{Y} \mu)$ is the sum of *squared* standard normal random variables.
 - In other words, $(\mathbf{Y} \mu)^T \Sigma^{-1} (\mathbf{Y} \mu) \sim \chi^2(p)$.
 - This can be seen as a generalization of the univariate result $\left(\frac{X-\mu}{\sigma}\right)^2 \sim \chi^2(1).$

Another important result ii

From this, we get a result about the probability that a multivariate normal falls within an *ellipse*:

$$P\left((\mathbf{Y} - \mu)^T \Sigma^{-1} (\mathbf{Y} - \mu) \le \chi^2(\alpha; p)\right) = 1 - \alpha.$$

 We can use this to construct a confidence region around the sample mean.

Application i

- We can use the result above to construct a graphical test of multivariate normality.
 - Note: The chi-square distribution does not yield a good approximation for large p. A more accurate graphical test can be constructed using a beta distribution.
- Procedure: Given a random sample $\mathbf{Y}_1, \dots, \mathbf{Y}_n$ of p-dimensional random vectors:
 - Compute $D_i^2 = (\mathbf{Y}_i \bar{\mathbf{Y}})^T S^{-1} (\mathbf{Y}_i \bar{\mathbf{Y}}).$
 - Compare the (observed) quantiles of the D_i^2 s with the (theoretical) quantiles of a $\chi^2(p)$ distribution.

Application ii

```
# Ramus data, Timm (2002)
main page <- "https://maxturgeon.ca/w20-stat7200/"
ramus <- read.csv(paste0(main page, "Ramus.csv"))
head(ramus, n = 5)
## Age8 Age8.5 Age9 Age9.5 ID
## 1 47.8 48.8 49.0 49.7 1
## 2 46.4 47.3 47.7 48.4 2
## 3 46.3 46.8 47.8 48.5 3
## 4 45.1 45.3 46.1 47.2 4
## 5 47.6 48.5 48.9 49.3 5
```

Application iii

```
var names <- c("Age8", "Age8.5",</pre>
                "Age9", "Age9.5")
par(mfrow = c(2, 2))
for (var in var names) {
  qqnorm(ramus[, var], main = var)
  qqline(ramus[, var])
```

Application iv

Application v

```
ramus <- ramus[,var names]</pre>
sigma hat <- cov(ramus)</pre>
ramus cent <- scale(ramus, center = TRUE,
                      scale = FALSE)
D vect <- apply(ramus cent, 1, function(row) {</pre>
  t(row) %*% solve(sigma hat) %*% row
})
```

Application vi

Application vii

Estimation

Sufficient Statistics i

- We saw in the previous lecture that the multivariate normal distribution is completely determined by its mean vector $\mu \in \mathbb{R}^p$ and its covariance matrix Σ .
- Therefore, given a sample $\mathbf{Y}_1, \dots, \mathbf{Y}_n \sim N_p(\mu, \Sigma)$ (n > p), we only need to estimate (μ, Σ) .
 - Obvious candidates: sample mean \mathbf{Y} and sample covariance S_n .

Sufficient Statistics ii

• Write down the *likelihood*:

$$L = \prod_{i=1}^{n} \left(\frac{1}{\sqrt{(2\pi)^{p}|\Sigma|}} \exp\left(-\frac{1}{2}(\mathbf{Y}_{i} - \mu)^{T} \Sigma^{-1}(\mathbf{Y}_{i} - \mu)\right) \right)$$
$$= \frac{1}{(2\pi)^{np/2}|\Sigma|^{n/2}} \exp\left(-\frac{1}{2} \sum_{i=1}^{n} (\mathbf{Y}_{i} - \mu)^{T} \Sigma^{-1}(\mathbf{Y}_{i} - \mu)\right)$$

• If we take the (natural) logarithm of L and drop any term that does not depend on (μ, Σ) , we get

$$\ell = -\frac{n}{2}\log|\Sigma| - \frac{1}{2}\sum_{i=1}^{n}(\mathbf{Y}_i - \mu)^T \Sigma^{-1}(\mathbf{Y}_i - \mu).$$

Sufficient Statistics iii

- If we can re-express the second summand in terms of $\bar{\mathbf{Y}}$ and S_n , by the Fisher-Neyman factorization theorem, we will then know that $(\bar{\mathbf{Y}}, S_n)$ is jointly **sufficient** for (μ, Σ) .
- First, we have

Sufficient Statistics iv

$$\sum_{i=1}^{n} (\mathbf{Y}_{i} - \mu)(\mathbf{Y}_{i} - \mu)^{T} = \sum_{i=1}^{n} (\mathbf{Y}_{i} - \bar{\mathbf{Y}} + \bar{\mathbf{Y}} - \mu)(\mathbf{Y}_{i} - \bar{\mathbf{Y}} + \bar{\mathbf{Y}} - \mu)^{T}$$

$$= \sum_{i=1}^{n} ((\mathbf{Y}_{i} - \bar{\mathbf{Y}})(\mathbf{Y}_{i} - \bar{\mathbf{Y}})^{T} + (\mathbf{Y}_{i} - \bar{\mathbf{Y}})(\bar{\mathbf{Y}} - \mu)^{T}$$

$$+ (\bar{\mathbf{Y}} - \mu)(\mathbf{Y}_{i} - \bar{\mathbf{Y}})^{T} + (\bar{\mathbf{Y}} - \mu)(\bar{\mathbf{Y}} - \mu)^{T})$$

$$= \sum_{i=1}^{n} (\mathbf{Y}_{i} - \bar{\mathbf{Y}})(\mathbf{Y}_{i} - \bar{\mathbf{Y}})^{T} + n(\bar{\mathbf{Y}} - \mu)(\bar{\mathbf{Y}} - \mu)^{T}$$

$$= (n-1)S_{n} + n(\bar{\mathbf{Y}} - \mu)(\bar{\mathbf{Y}} - \mu)^{T}.$$

Sufficient Statistics v

 \bullet Next, using the fact that $\operatorname{tr}(ABC)=\operatorname{tr}(BCA),$ we have

Sufficient Statistics vi

$$\sum_{i=1}^{n} (\mathbf{Y}_{i} - \mu)^{T} \Sigma^{-1} (\mathbf{Y}_{i} - \mu) = \operatorname{tr} \left(\sum_{i=1}^{n} (\mathbf{Y}_{i} - \mu)^{T} \Sigma^{-1} (\mathbf{Y}_{i} - \mu) \right)$$

$$= \operatorname{tr} \left(\sum_{i=1}^{n} \Sigma^{-1} (\mathbf{Y}_{i} - \mu) (\mathbf{Y}_{i} - \mu)^{T} \right)$$

$$= \operatorname{tr} \left(\Sigma^{-1} \sum_{i=1}^{n} (\mathbf{Y}_{i} - \mu) (\mathbf{Y}_{i} - \mu)^{T} \right)$$

$$= (n-1) \operatorname{tr} \left(\Sigma^{-1} S_{n} \right)$$

$$+ n \operatorname{tr} \left(\Sigma^{-1} (\bar{\mathbf{Y}} - \mu) (\bar{\mathbf{Y}} - \mu)^{T} \right)$$

$$= (n-1) \operatorname{tr} \left(\Sigma^{-1} S_{n} \right)$$

$$+ n (\bar{\mathbf{Y}} - \mu)^{T} \Sigma^{-1} (\bar{\mathbf{Y}} - \mu).$$

50

Maximum Likelihood Estimation i

Going back to the log-likelihood, we get:

$$\ell = -\frac{n}{2}\log|\Sigma| - \frac{(n-1)}{2}\operatorname{tr}\left(\Sigma^{-1}S_n\right) - \frac{n}{2}(\bar{\mathbf{Y}} - \mu)^T \Sigma^{-1}(\bar{\mathbf{Y}} - \mu).$$

• First, fix Σ and maximise over μ . The only term that depends on μ is

$$-\frac{n}{2}(\bar{\mathbf{Y}}-\mu)^T \Sigma^{-1}(\bar{\mathbf{Y}}-\mu).$$

We can maximise this term by minimising

$$(\bar{\mathbf{Y}} - \mu)^T \Sigma^{-1} (\bar{\mathbf{Y}} - \mu).$$

Maximum Likelihood Estimation ii

• But since Σ^{-1} is positive definite, we have

$$(\bar{\mathbf{Y}} - \mu)^T \Sigma^{-1} (\bar{\mathbf{Y}} - \mu) \ge 0,$$

with equality if and only if $\mu = \bar{\mathbf{Y}}$.

In other words, the log-likelihood is maximised at

$$\hat{\mu} = \bar{\mathbf{Y}}.$$

• Now, we can turn our attention to Σ . We want to maximise

$$\ell = -\frac{n}{2}\log|\Sigma| - \frac{(n-1)}{2}\operatorname{tr}\left(\Sigma^{-1}S_n\right) - \frac{n}{2}(\bar{\mathbf{Y}} - \mu)^T \Sigma^{-1}(\bar{\mathbf{Y}} - \mu).$$

Maximum Likelihood Estimation iii

• At $\mu = \bar{\mathbf{Y}}$, it reduces to

$$-\frac{n}{2}\log|\Sigma| - \frac{(n-1)}{2}\operatorname{tr}\left(\Sigma^{-1}S_n\right).$$

• Write $V = (n-1)S_n$. We then have

$$-\frac{n}{2}\log|\Sigma| - \frac{1}{2}\operatorname{tr}\left(\Sigma^{-1}V\right).$$

Maximising this quantity is equivalent to minimising

$$\log |\Sigma| + \frac{1}{n} \operatorname{tr} \left(\Sigma^{-1} V \right),$$

and by adding the constant $\log |nV^{-1}|$, we get

$$\log|\Sigma| + \frac{1}{n}\operatorname{tr}\left(\Sigma^{-1}V\right) + \log|nV^{-1}| = \log|nV^{-1}\Sigma| + \operatorname{tr}\left(n^{-1}\Sigma^{-1}V\right)$$

Maximum Likelihood Estimation iv

• Set $T = nV^{-1}\Sigma$. Our maximum likelihood problem now reduces to minimising

$$\log|T| + \operatorname{tr}\left(T^{-1}\right).$$

• Let $\lambda_1, \ldots, \lambda_p$ be the (positive) eigenvalues of T. We now have

$$\log|T| + \operatorname{tr}\left(T^{-1}\right) = \log\left(\prod_{i=1}^{p} \lambda_i\right) + \sum_{i=1}^{p} \lambda_i^{-1}$$
$$= \sum_{i=1}^{p} \log \lambda_i + \lambda_i^{-1}.$$

Maximum Likelihood Estimation v

• Each summand can be minimised individually, and the minimum occurs at $\lambda_i = 1$. In other words, the (overall) minimum is when $T = I_p$, which is equivalent to

$$\Sigma = \frac{n-1}{n} S_n = \frac{1}{n} \sum_{i=1}^{n} (\mathbf{Y}_i - \bar{\mathbf{Y}}) (\mathbf{Y}_i - \bar{\mathbf{Y}})^T.$$

• In other words: $(\bar{\mathbf{Y}}, \frac{n-1}{n}S_n)$ are the maximum likelihood estimators for (μ, Σ) .

55

Maximum Likelihood Estimators

- Since the multivariate normal density is "well-behaved", we can deduce the usual properties:
 - Consistency: $(\bar{\mathbf{Y}}, \hat{\Sigma})$ converges in probability to (μ, Σ) .
 - **Efficiency**: Asymptotically, the covariance of $(\bar{\mathbf{Y}}, \hat{\Sigma})$ achieves the Cramér-Rao lower bound.
 - Invariance: For any transformation $(g(\mu),G(\Sigma))$ of (μ,Σ) , its MLE is $(g(\bar{\mathbf{Y}}),G(\hat{\Sigma}))$.

Visualizing the likelihood i

```
library(mvtnorm)
set.seed(123)
n < -50; p < -2
mu < -c(1, 2)
Sigma \leftarrow matrix(c(1, 0.5, 0.5, 1), ncol = p)
Y <- rmvnorm(n, mean = mu, sigma = Sigma)
```

Visualizing the likelihood ii

```
loglik <- function(mu, sigma, data = Y) {</pre>
  # Compute quantities
  y bar <- colMeans(Y)</pre>
  quad_form <- t(y_bar - mu) %*% solve(sigma) %*%
    (y bar - mu)
  -0.5*n*log(det(sigma)) -
    0.5*(n-1)*sum(diag(solve(sigma) %*% cov(Y))) -
    0.5*n*drop(quad form)
}
```

Visualizing the likelihood iii

```
grid xy <- expand.grid(seq(0, 2, length.out = 32),
                      seq(0, 4, length.out = 32))
head(grid xy, n = 5)
##
     Var1 Var2
## 1 0.0000000
## 2 0.06451613
## 3 0.12903226
               0
## 4 0.19354839
               0
## 5 0.25806452
                  0
```

Visualizing the likelihood iv

```
contours <- purrr::map_df(seq_len(nrow(grid xy)),</pre>
                           function(i) {
  # Where we will evaluate loglik
  mu_obs <- as.numeric(grid xy[i,])</pre>
  # Evaluate at the pop covariance
  z <- loglik(mu obs, sigma = Sigma)
  # Output data.frame
  data.frame(x = mu obs[1],
             y = mu obs[2],
             z = z
})
```

Visualizing the likelihood v

Visualizing the likelihood vi

Visualizing the likelihood vii

Visualizing the likelihood viii

```
library(scatterplot3d)
with(contours, scatterplot3d(x, y, z))
```

Visualizing the likelihood ix

Sampling Distributions

- Recall the univariate case:
 - $\bar{X} \sim N(\mu, \sigma^2/n)$;
 - $\bullet \quad \frac{(n-1)s^2}{\sigma^2} \sim \chi^2(n-1);$
 - \bar{X} and s^2 are independent.
- In the multivariate case, we have similar results:
 - $\bar{\mathbf{Y}} \sim N_p\left(\mu, \frac{1}{n}\Sigma\right)$;
 - $(n-1)S_n = n\hat{\Sigma}$ follows a Wishart distribution with n-1 degrees of freedom;
 - $\bar{\mathbf{Y}}$ and S_n are independent.
- We will prove the last two properties later.

Bayesian analysis i

- In Frequentist statistics, parameters are fixed quantities that we are trying to estimate and about which we want to make inference.
- In Bayesian statistics, parameters are given a distribution that models the uncertainty/knowledge we have about the underlying population quantity.
 - And as we collect data, our knowledge changes, and so does the distribution.

Bayesian analysis i

- Some vocabulary:
 - Prior distribution: Distribution of the parameters
 before data collection/analysis. It represents our current
 knowledge.
 - Posterior distribution: Distribution of the parameters after data collection/analysis. It represents our updated knowledge.
- Bayesian statistics is based on the following updating rule:

Posterior distribution \propto Prior distribution \times Likelihood.

Bayesian analysis iii

- We will look at the posterior distribution of the multivariate normal mean μ , assuming Σ is known, when the prior is also normally distributed.
- Let's start with a single p-dimensional observation $\mathbf{Y} \sim N(\mu, \Sigma)$. The log-likelihood (keeping only terms depending on μ) is equal to

$$\log L(\mathbf{Y} \mid \mu) \propto -\frac{1}{2} (\mathbf{Y} - \mu)^T \Sigma^{-1} (\mathbf{Y} - \mu).$$

• Let $p(\mu) = N(\mu_0, \Sigma_0)$ be the prior distribution for μ . On the log scale, we have

$$\log p(\mu) \propto -\frac{1}{2} (\mu - \mu_0)^T \Sigma_0^{-1} (\mu - \mu_0).$$

Bayesian analysis iv

Using the updating rule, we have

$$\log p(\mu \mid \mathbf{Y}) \propto -\frac{1}{2} (\mathbf{Y} - \mu)^T \Sigma^{-1} (\mathbf{Y} - \mu) - \frac{1}{2} (\mu - \mu_0)^T \Sigma_0^{-1} (\mu - \mu_0)$$

• If we expand both quadratic forms and only keep terms that depend on μ , we get

$$\log p(\mu \mid \mathbf{Y}) \propto -\frac{1}{2} \left(\mu^T \Omega^{-1} \mu - (\mathbf{Y}^T \Sigma^{-1} + \mu_0^T \Sigma_0^{-1}) \mu - \mu^T (\Sigma^{-1} \mathbf{Y} + \Sigma_0^{-1} \mu_0) \right),$$

where $\Omega^{-1} = \Sigma^{-1} + \Sigma_0^{-1}$.

Bayesian analysis v

- Since Ω^{-1} is the sum of two positive definite matrices, it is itself positive definite.
- Using the Cholesky decomposition, we can write $\Omega^{-1}=U^TU \text{ with } U \text{ triangular and invertible. We therefore have}$

$$\log p(\mu \mid \mathbf{Y}) \propto -\frac{1}{2} \left(\mu^T U^T U \mu - (\mathbf{Y}^T \Sigma^{-1} + \mu_0^T \Sigma_0^{-1}) U^{-1} U \mu - \mu^T (U^T) (U^T)^{-1} (\Sigma^{-1} \mathbf{Y} + \Sigma_0^{-1} \mu_0) \right)$$

$$\propto -\frac{1}{2} \left((U \mu)^T (U \mu) - (\mathbf{Y}^T \Sigma^{-1} + \mu_0^T \Sigma_0^{-1}) U^{-1} (U \mu) - (U \mu)^T (U^T)^{-1} (\Sigma^{-1} \mathbf{Y} + \Sigma_0^{-1} \mu_0) \right).$$

Bayesian analysis vi

• Set $\nu = (U^T)^{-1}(\Sigma^{-1}\mathbf{Y} + \Sigma_0^{-1}\mu_0)$ and complete the square:

$$\log p(\mu \mid \mathbf{Y}) \propto -\frac{1}{2} \left((U\mu)^T (U\mu) - \nu^T (U\mu) - (U\mu)^T \nu \right)$$

$$\propto -\frac{1}{2} \left((U\mu - \nu)^T (U\mu - \nu) - \nu^T \nu \right)$$

$$\propto -\frac{1}{2} \left((\mu - U^{-1}\nu)^T U^T U (\mu - U^{-1}\nu) - \nu^T \nu \right)$$

$$\propto -\frac{1}{2} \left((\mu - U^{-1}\nu)^T \Omega^{-1} (\mu - U^{-1}\nu) - \nu^T \nu \right).$$

Bayesian analysis vii

• Now, note that

$$\begin{split} U^{-1}\nu &= U^{-1}(U^T)^{-1}(\Sigma^{-1}\mathbf{Y} + \Sigma_0^{-1}\mu_0) \\ &= (U^TU)^{-1}(\Sigma^{-1}\mathbf{Y} + \Sigma_0^{-1}\mu_0) \\ &= \Omega(\Sigma^{-1}\mathbf{Y} + \Sigma_0^{-1}\mu_0) \\ &= \left(\Sigma^{-1} + \Sigma_0^{-1}\right)^{-1}(\Sigma^{-1}\mathbf{Y} + \Sigma_0^{-1}\mu_0). \end{split}$$

Bayesian analysis viii

Moreover, we have

$$\nu^{T}\nu = \left((U^{T})^{-1} (\Sigma^{-1}\mathbf{Y} + \Sigma_{0}^{-1}\mu_{0}) \right)^{T} \left((U^{T})^{-1} (\Sigma^{-1}\mathbf{Y} + \Sigma_{0}^{-1}\mu_{0}) \right)$$

$$= \left(\Sigma^{-1}\mathbf{Y} + \Sigma_{0}^{-1}\mu_{0} \right)^{T} (U)^{-1} (U^{T})^{-1} \left(\Sigma^{-1}\mathbf{Y} + \Sigma_{0}^{-1}\mu_{0} \right)$$

$$= \left(\Sigma^{-1}\mathbf{Y} + \Sigma_{0}^{-1}\mu_{0} \right)^{T} (U^{T}U)^{-1} \left(\Sigma^{-1}\mathbf{Y} + \Sigma_{0}^{-1}\mu_{0} \right)$$

$$= \left(\Sigma^{-1}\mathbf{Y} + \Sigma_{0}^{-1}\mu_{0} \right)^{T} \Omega \left(\Sigma^{-1}\mathbf{Y} + \Sigma_{0}^{-1}\mu_{0} \right).$$

Bayesian analysis ix

• In other words, $\nu^T \nu$ does not depend on μ , and therefore we can drop it from our expression above. The conclusion is that the log-posterior distribution is proportional to

$$-\frac{1}{2} \left((\mu - \Omega(\Sigma^{-1}\mathbf{Y} + \Sigma_0^{-1}\mu_0))^T \Omega^{-1} (\mu - \Omega(\Sigma^{-1}\mathbf{Y} + \Sigma_0^{-1}\mu_0)) \right)$$

• As a function of μ , this is the kernel of a multivariate normal density:

$$p(\mu \mid \mathbf{Y}) \sim N\left(\Omega(\Sigma^{-1}\mathbf{Y} + \Sigma_0^{-1}\mu_0), \Omega\right).$$

Bayesian analysis x

Now, assume we have a random sample $\mathbf{Y}_1, \dots, \mathbf{Y}_n$. We know that

$$\bar{\mathbf{Y}} \sim N(\mu, n^{-1}\Sigma).$$

 \blacksquare Therefore, the posterior distribution of μ given the random sample is

$$p(\mu \mid \mathbf{Y}_1, \dots, \mathbf{Y}_n) \sim N\left(\Omega(n\Sigma^{-1}\bar{\mathbf{Y}} + \Sigma_0^{-1}\mu_0), \Omega\right),$$
 where $\Omega = \left(n\Sigma^{-1} + \Sigma_0^{-1}\right)^{-1}$.

A few comments

- The inverse covariance matrix $n\Sigma^{-1} + \Sigma_0^{-1}$ is also called the *precision* matrix.
 - We can see that the larger the sample size n, the less significant the prior precision Σ_0^{-1} becomes.
- The posterior mean is a (scaled) linear combination of the sample mean and prior mean.
 - Again, as the sample size increases, the less significant the prior mean becomes.