Multivariate Normal Distribution

Max Turgeon

STAT 7200—Multivariate Statistics



Building the multivariate density i

= Let Z ~ N(0,1) be a standard (univariate) normal
random variable. Recall that its density is given by

o(z) = \/12_7Texp <—;,22) :

= Now if we take Z;,...,Z, ~ N(0,1) independently
distributed, their joint density is



Building the multivariate density ii
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where z = (21,..., 2,).
= More generally, let 4 € RP and let > be a p X p positive
definite matrix.



Building the multivariate density iii

= Let ¥ = LLT be the Cholesky decomposition for X.
= Let Z=(Z,...,Z,) be a standard (multivariate) normal
random vector, and define Y = LZ + . We know from a
previous lecture that
» E(Y)=LE(Z)+p=y;
= Cov(Y) = LCov(Z)LT = 3.
= To get the density, we need to compute the inverse
transformation:

Z =LY —p).



Building the multivariate density iv

» The Jacobian matrix J for this transformation is simply
L~ and therefore

|det(J)| = |det(L™)|

= det(L)™* (positive diagonal elements)
i

= y/det(X)
= det(X)"1/2,



Building the multivariate density v

» Plugging this into the formula for the density of a
transformation, we get

Flyr, - yp) = det(lz)l/zcb(ﬁl(y — )
1 1 1. Tr—1
- sy (o o (3070 - WP - )

B 1

~ det(X)1/2
1 1 T

= mexp <—2(y —p) X (y — M)) .

Vo <—;(y — )" (LLY) "y - u))



set.seed(123)

n <- 1000; p <- 2

Z <- matrix(rnorm(n*p), ncol = p)

mu <- c(1, 2)
Sigma <- matrix(c(1, 0.5, 0.5, 1), ncol = 2)
L <- t(chol(Sigma))



Y <- L %*% t(Z) + mu
Y <- t(Y)

colMeans (Y)

## [1] 1.016128 2.044840

cov(Y)

#it [,1] [,2]
## [1,] 0.9834589 0.5667194
## [2,] 0.5667194 1.0854361



library(tidyverse)

Y %h>%
data.frame() %>%
ggplot (aes(X1, X2)) +
geom_density_2d()



X1
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library(mvtnorm)
Y <- rmvnorm(n, mean = mu, sigma = Sigma)
colMeans (Y)

## [1] 0.9812102 1.9829380

cov(Y)
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#it [,1] [,2]
## [1,] 0.9982835 0.4906990
## [2,] 0.4906990 0.9489171

Y %>%
data.frame() %>%
ggplot(aes(X1, X2)) +
geom_density_2d()
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Characteristic function i

» Using a similar strategy, we can derive the characteristic
function of the multivariate normal distribution.

= Recall that the characteristic function of the univariate
standard normal distribution is given by

o(t) = exp (‘;) |
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Characteristic function ii

= Therefore, if we have Z3,...,Z, ~ N(0,1) independent,
the characteristic function of Z = (Z;,...,Z,) is

15



Characteristic function iii

» For p € RP and ¥ = LL” positive definite, define
Y = LZ + p. We then have

py(t) = exp (it" ) pz(L"t)

— exp (Z'tTM) exp (-( LTt)T( LTt)>

2
p ? [’L 2 °
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Alternative characterization

A p-dimensional random vector Y is said to have a multivariate
normal distribution if and only if every linear combination of Y
has a univariate normal distribution. - Note: In particular,
every component of Y is also normally distributed.
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This result follows from the Cramer-Wold theorem. Let
u € RP. We have

PuTy (t) = Yy (tu)

uTZut2>

= tul y —
exp(zuu 5

This is the characteristic function of a univariate normal
variable with mean u” and variance u” Xu.
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Conversely, assume Y has mean p and X, and assume u’Y is
normally distributed for all u € RP. In particular, we must have

uTZut2>

ptt) o -

Now, let's look at the characteristic function of Y:
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ey(t)=F (exp (z’tTY))
=F (exp (i(tTY)))
= ppry (1)

. ('tT _tTZt>
— p VA :u 3

2

This is the characteristic function we were looking for. [

20



Counter-Example i

= Let Y be a mixture of two multivariate normal
distributions Y, Y, with mixing probability p.
= Assume that

Y ~ Ny(0, (1 — p)I, + pi117),

where 1 is a p-dimensional vector of 1s.
= In other words, the diagonal elements are 1, and the

off-diagonal elements are p;.
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Counter-Example ii

= First, note that the characteristic function of a mixture
distribution is a mixture of the characteristic functions:

ey (t) = pey, (t) + (1 — p)ey,(t).

» Therefore, unless p = 0,1 or p; = po, the random vector
Y does not follow a normal distribution.
» But the components of a mixture are the mixture of each
component.
= Therefore, all components of Y are univariate standard
normal variables.

22



Counter-Example iii

= In other words, even if all the margins are normally
distributed, the joint distribution may not follow a
multivariate normal.
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Useful properties i

= IfY ~ N,(,X), Ais agx pmatrix, and b € R?, then
AY + b~ Ny (Ap + b, ATAT).

» IfY ~ N,(u,X) then all subsets of Y are normally
distributed:; that is, write

H2 ’
= Then Y1 ~ Nr(ﬂh 211) and YQ ~ Np—r(ﬂZ; 222).
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Useful properties ii

= Assume the same partition as above. Then the following
are equivalent:
= Y; and Y, are independent;
= Y9 =0;
= Cov(Yy,Y2) =0.

25



Exercise (J&W 4.3)

Let (Y1, Ys,Y3) ~ N3(u, X) with p = (3,1,4) and

1 -2 0
Y=|-2 5
0 0 2
Which of the following random variables are independent?
Explain.
1. Y] and Y5.
2. Y5 and Ys.
3. (Y1,Y2) and V3.
4. 0.5(Y1 +Y3) and Ys.
5. Y; and Y5 — 2V, — V5.
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Conditional Normal Distributions i

= Theorem: Let Y ~ N,(u,X), where

» Then the conditional distribution of Y given Y, =y is
multivariate normal N,.(ji1)2, 31j2), where

" fy)p =M1 F Y12559 (y2 — p2)
= Tip =211 — T1255; Tar.
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Let B be a matrix of the same dimension as >1,. We will look
at the following linear transformation of Y:

I —-B —
v - Y, — BY, .
0 I Y,

Using the properties of the mean, we have

I -B = p1 — B
0 I 2 .
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Similarly, using the properties of the covariance, we have

I —B)\ (X117 212 I 0
0 I Yo1 Yoo/ \=BT I

_ [Z11 — By — %19BT + BE» BT Y15 — BEy
E21 - EQZBT E22 '
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Recall that subsets of a multivariate normal variable are again

multivariate normal:
Y1~ BYs ~ N (i — Bz, Su — BSn — £12B” + BEpB"),
Yo~ N(,U27 222)~

If we take B = X1535;, the two off-diagonal blocks of the
covariance matrix above become 0. This implies that
Y, — BY, is independent of Y.
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Given B = ¥1,%5,", we can deduce that
Y — 2155 Yo~ N (,ul — $1255 fia, E1|2) )

where
Yipg=X11 — S1255 Da1.

Using the fact that Y; — 21222_21Y2 and Y, are independent,
we can conclude that

Y, - 21225213{'2 =Y; — E1222721}’2 | Yy =yo.
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Finally, by adding 31535,y to the right-hand side, we get

Y | Y=y~ N (Ml + $19%5 (Y2 — pia), ZJ1|2) :
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Conditional Normal Distributions ii

= Theorem: Let Yy ~ N,_,(p2, X22) and assume that Y,
given Yy =y, is multivariate normal N,.(Ays + b, ),
where €2 does not depend on y,. Then

Y = (il) ~ N, (i, X), where

2

(AMQ + b)
| | M = y
M2

5 Q4+ AZ22AT AXo9
a T AT Yo )
= Proof: Exercise (e.g. compute joint density).
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Exercise

= Let Yy ~ N;(0,1) and assume

+1
Yl\Y2:y2NN2<(y2 );5)-
290

Find the joint distribution of (Y1,Y>).
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Another important result i

» Let Y ~ N,(i, %), and let 3 = LL” be the Cholesky

decomposition of X.
» We know that Z = L~'(Y — p) is normally distributed,
with mean 0 and covariance matrix

Cov(Z) = L'2(L ™Y = I,

» Therefore (Y — p)"S7 (Y — p) is the sum of squared
standard normal random variables.

= In other words, (Y — p)TS 1Y — ) ~ x2%(p).
= This can be seen as a generalization of the univariate

result (%)2 ~ x2(1).
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Another important result ii

= From this, we get a result about the probability that a
multivariate normal falls within an ellipse:

P((Y =" (Y = p) < x*a;p)) =1—a

= We can use this to construct a confidence region around
the sample mean.
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Application i

= We can use the result above to construct a graphical test
of multivariate normality.
= Note: The chi-square distribution does not yield a good
approximation for large p. A more accurate graphical
test can be constructed using a beta distribution.
» Procedure: Given a random sample Yi,...,Y, of
p-dimensional random vectors:
= Compute D? = (Y; - Y)TS~1(Y; - Y).
= Compare the (observed) quantiles of the D?s with the
(theoretical) quantiles of a x?(p) distribution.
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Application ii

# Ramus data, Timm (2002)
main_page <- "https://maxturgeon.ca/w20-stat7200/"
ramus <- read.csv(pasteO(main_page, "Ramus.csv"))

head(ramus, n = 5)

##  Age8 Age8.5 Age9 Age9.5 ID
## 1 47.8 48.8 49.0 49.7 1
## 2 46.4 47.3 47.7 48.4 2
## 3 46.3 46.8 47.8 48.5 3
## 4 45.1 45.3 46.1 47.2 4
## 5 47.6 48.5 48.9 49.3 b
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Application iii

var_names <- c("Age8",

IlAgeg n ,

par (mfrow = c(2, 2))

for (var in var names)

3

qqnorm(ramus [, var],

qqline(ramus[, var])

"Age8.5",
"Age9.5")

{

main = var)
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Application iv
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Application v

ramus <- ramus[,var_names]

sigma_hat <- cov(ramus)

ramus_cent <- scale(ramus, center = TRUE,
scale = FALSE)

D _vect <- apply(ramus_cent, 1, function(row) {
t(row) %*), solve(sigma_hat) %*% row

i)
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Application vi

qgplot (qchisq(ppoints(D_vect), df = 4),
D vect, xlab = "Theoretical Quantiles")
qqline(D_vect, distribution = function(p) {
qchisq(p, df = 4)
1))
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Application vii

10

D_vect

Theoretical Quantiles
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Estimation
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Sufficient Statistics i

» We saw in the previous lecture that the multivariate
normal distribution is completely determined by its mean
vector ;1 € RP and its covariance matrix .

= Therefore, given a sample Yy,..., Y, ~ N,(i, %)

(n > p), we only need to estimate (u,X).
= Obvious candidates: sample mean Y and sample
covariance S,.
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Sufficient Statistics ii

= Write down the likelihood:

i 1 Ty —1 R
Hl( 2oy Xp(—Q(Yi—m 2(Y u)))

n

) <27r>/1|2|/ o (‘ >V S (Y - u>)

i=1
= If we take the (natural) logarithm of L and drop any term
that does not depend on (u, X)), we get
n & Ty 1
{= —ilog]Z] 9 Z(Yz — 1) 5 (Y — p).
i=1
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Sufficient Statistics iii

= |If we can re-express the second summand in terms of Y
and S,,, by the Fisher-Neyman factorization theorem, we
will then know that (Y, .S,) is jointly sufficient for

(1, 2).
= First, we have
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Sufficient Statistics iv

n

(Yi—u)(Yi—p)" = Z(Yi—Y+Y—/~L) (YimY+Y—p)"

aor

(Vi =D)(Y - )T+ (i =)V - )"
+HY =) (Yi = Y)" + (Y = p)(Y - )")
=Y (Yi-YV)(Yi = YV)" +n(Y - p)(Y - )"

i=1

= (n—=1)S, +n(Y = p)(Y — p)".
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Sufficient Statistics v

= Next, using the fact that tr(ABC') = tr(BC'A), we have

49



Sufficient Statistics vi
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Maximum Likelihood Estimation i

» Going back to the log-likelihood, we get:

__n (n—1) -1 no$ Ty—1(v
€=~ log|=|—— tr (2 &0—§Oﬁw)2 (Y—p).
= First, fix X and maximise over p. The only term that

depends on  is

—S(Y = @)= (Y - ).

= We can maximise this term by minimising
(Y — )" 27H(Y — p).
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Maximum Likelihood Estimation ii

» But since X! is positive definite, we have
(Y — )" (Y — ) > 0,

with equality if and only if 4 =Y.
= In other words, the log-likelihood is maximised at

p=Y.

= Now, we can turn our attention to X. We want to
maximise

_.n (n—1) il N < Ty—1(vy
£ =~ log|Z|—"— tr (2 Sn)—g(Y—p) N Y —p).
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Maximum Likelihood Estimation iii

= At =7, it reduces to

n (n—1) i
—Elog\z\ i tr (Z Sn) .
= Write V = (n —1)S,. We then have
n 1 1
—5 log|%| — o tr (='v).
= Maximising this quantity is equivalent to minimising
1
log|| + ~tr (S7'V),
n
and by adding the constant log|nV |, we get

1
log|X|+—tr (E’1V) +log|nV | = log|nV 'S |+tr (n’1271V)
n
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Maximum Likelihood Estimation iv

= Set 7'=nV 13, Our maximum likelihood problem now
reduces to minimising

log|T'| + tr (T_1> :

= Let \j,...,\, be the (positive) eigenvalues of 7. We
now have

p
log\TH—tr( ) log<H>\>+Z)\il
i=1

— Zlog s A AT

=il
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Maximum Likelihood Estimation v

» Each summand can be minimised individually, and the
minimum occurs at \; = 1. In other words, the (overall)
minimum is when T" = I, which is equivalent to

1 1> _ _
D=8, == (Y, - YV)(Y: - Y)T
n n =
= In other words: (_ i ) are the maximum
likelihood estlmators for (u, ).
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Maximum Likelihood Estimators

= Since the multivariate normal density is “well-behaved”,
we can deduce the usual properties:
= Consistency: (Y,3) converges in probability to (,X).
= Efficiency: Asymptotically, the covariance of (Y, i)
achieves the Cramér-Rao lower bound.

= Invariance: For any transformation (g(u), G(X)) of
(1, 2), its MLE is (g(Y), G()).
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Visualizing the likelihood i

library(mvtnorm)
set.seed(123)

n <- 50; p <= 2

mu <- c(1, 2)
Sigma <- matrix(c(1, 0.5, 0.5, 1), ncol = p)

Y <- rmvnorm(n, mean = mu, sigma = Sigma)
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Visualizing the likelihood ii

loglik <- function(mu, sigma, data = Y) {
# Compute quantities
y_bar <- colMeans(Y)
quad_form <- t(y_bar - mu) %*), solve(sigma) %*/
(y_bar - mu)

-0.5*n*log(det(sigma)) -

0.5%(n - 1)*sum(diag(solve(sigma) %*% cov(Y))) -
0.5*n*drop(quad_form)

58



Visualizing the likelihood iii

grid_xy <- expand.grid(seq(0, 2, length.out = 32),
seq(0, 4, length.out = 32))

head(grid_xy, n = 5)

## Varl Var2
## 1 0.00000000 0
## 2 0.06451613
## 3 0.12903226
## 4 0.19354839
## 5 0.25806452

o O O O
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Visualizing the likelihood iv

contours <- purrr::map_df(seq_len(nrow(grid_xy)),
function(i) {
# Where we will evaluate loglik
mu_obs <- as.numeric(grid xy[i,])
# Evaluate at the pop covariance
z <- loglik(mu_obs, sigma = Sigma)
# Output data. frame
data.frame(x = mu_obs[1],
y = mu_obs[2],

Z = 2Z)

i)
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Visualizing the likelihood v

library(tidyverse)

library(ggrepel)

# Create df with pop and sample means

data_means <- data.frame(x = c(mu[l], mean(Y[,1])),
y = c(mu[2], mean(Y[,2])),
label = c("Pop.", "Sample"))
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Visualizing the likelihood vi

ggplot (contours, aes(x, y)) +
geom_contour (aes(z = z)) +
geom_point(data = data_means) +
geom_label_repel(data = data_means,

aes(label = label))
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Visualizing the likelihood vii

63



Visualizing the likelihood viii

library(scatterplot3d)
with(contours, scatterplot3d(x, y, z))
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Visualizing the likelihood ix
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Sampling Distributions

= Recall the univariate case:
= X ~ N (,0%/n);
(n—1)s? 2 }
Tz X (n—1);
= X and s? are independent.
= In the multivariate case, we have similar results:
T 15).
= Y~ Np (,U,,;E).
= (n—1)5, = nX follows a Wishart distribution with
n — 1 degrees of freedom;
= Y and S, are independent.

= We will prove the last two properties later.
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Bayesian analysis i

= In Frequentist statistics, parameters are fixed quantities
that we are trying to estimate and about which we want
to make inference.

» In Bayesian statistics, parameters are given a distribution
that models the uncertainty/knowledge we have about
the underlying population quantity.

= And as we collect data, our knowledge changes, and so

does the distribution.
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Bayesian analysis ii

= Some vocabulary:

= Prior distribution: Distribution of the parameters
before data collection/analysis. It represents our current
knowledge.

= Posterior distribution: Distribution of the parameters
after data collection/analysis. It represents our updated
knowledge.

» Bayesian statistics is based on the following updating
rule:

Posterior distribution o< Prior distribution x Likelihood.
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Bayesian analysis iii

= We will look at the posterior distribution of the
multivariate normal mean x, assuming ¥ is known, when
the prior is also normally distributed.

» Let's start with a single p-dimensional observation
Y ~ N(u, ). The log-likelihood (keeping only terms
depending on p) is equal to

log L(Y | 1) ox —5(Y — w757 (Y ).

» Let p(p) = N(po, Xo) be the prior distribution for ;. On
the log scale, we have

1 _
log p(p) o =5 (1 = 10) "™ (11 = fto)-
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Bayesian analysis iv

» Using the updating rule, we have

log p(j1 | ¥) o6 —5 (¥ —2)" 8 (Y )~ (140" S5 (o)

» |f we expand both quadratic forms and only keep terms
that depend on p, we get

1 . . .
logp(p | Y) < —3 (W = (Y= + pd S5
—p(Z7'Y + 55 o)) ,

where Q7! = %1 4 301
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Bayesian analysis v

= Since Q! is the sum of two positive definite matrices, it
is itself positive definite.

» Using the Cholesky decomposition, we can write
Q! = UTU with U triangular and invertible. We
therefore have

logp( | Y) —; (WU — (Y'S™ + i s U™ U
—p" (U U ETY + 25" o) )
o —5 (TR W) ~ (Y75 + 550 U
—(Uw U HETY + S5 o))
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Bayesian analysis vi

= Set v = (U")"1 (7YY + S5 o) and complete the
square:

log p(y | ¥) o — 5 (U (Uk) — 7 (Uk) — (U4)Tv)
x —; (U =v)"(Up—v)—v"v)
x ; (u =)0V (- U'w) = ")
. —; (6= U™ )7 Q7 (u— U) = o7w).
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Bayesian analysis vii

= Now, note that

Uty =01 U (27N + 35 o)
= (UTU)'(ETY + 25" o)
= QZ7Y + 35 o)
= (54 5) 7 B 4 i)
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Bayesian analysis viii

= Moreover, we have

(
= (=Y + 35 uo) W)U (ZTY + 25" o)
= ('Y +355 Mo) UTU)™ (7Y + 55 o)

= ('Y +355 /LU) Q (=Y + 55 o)
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Bayesian analysis ix

= In other words, v*v does not depend on i, and therefore
we can drop it from our expression above. The conclusion
is that the log-posterior distribution is proportional to

—; (1= ZY + T3 120)) 70 (1 — AT Y + T3 w0))).

= As a function of y, this is the kernel of a multivariate
normal density:

p(i | Y) ~ N (QE7Y + 55 o), Q).
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Bayesian analysis x

= Now, assume we have a random sample Y4,...,Y,. We
know that
Y ~ N(p,n™'%).

» Therefore, the posterior distribution of 1 given the
random sample is

(| Y., Yn) ~ N (QnE71Y + 550 10), )

where () = (nE‘l + Zal)_l.
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A few comments

= The inverse covariance matrix nX ' + X! is also called
the precision matrix.
= We can see that the larger the sample size n, the less
significant the prior precision 251 becomes.
= The posterior mean is a (scaled) linear combination of the
sample mean and prior mean.

= Again, as the sample size increases, the less significant
the prior mean becomes.
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