Multivariate Random Variables

Max Turgeon

STAT 7200—Multivariate Statistics



Joint distributions

= Let X and Y be two random variables.
» The joint distribution function of X and Y is

F(z,y)=P(X <z,Y <y).

= More generally, let Y7,...,Y, be p random variables.
Their joint distribution function is

F(ybayp):P(}/lSylv?}/;?Syp)



Joint densities

» |f F'is absolutely continuous almost everywhere, there
exists a function f called the density such that

Y1 Yp
F(yl,...,yp):/_ /_ flug, ..., up)dug - - - duy.

» The joint moments are defined as follows:

E(Y™ .- YT) =
/ / 1w fun, - up)dug - - duyg,.

= Exercise: Show that this is consistent with the univariate
definition of E(Y{"'), i.e. ng =--- =mn, =0.



Marginal distributions i

» From the joint distribution function, we can recover the
marginal distributions:

Fi(z) = lim F(yi,...,y,).

Yj—>00

J#1
= More generally, we can find the joint distribution of a

subset of variables by sending the other ones to infinity:

F(y1>'-'7y7’>:y}i_rpooF(ylw'wyp)’ T <p.
j>r



Marginal distributions i

= Similarly, from the joint density function, we can recover
the marginal densities:

fi(z) :/OO f(ul,...,up)dul...@.._dup.

—0oQ0

= |n other words, we are integrating out the other variables.



» Let R=[ay,b1] X -+ X [a,,b,] CRP be a
hyper-rectangle, with a; < b;, for all 7.

= IfY = (Y),...,Y,) is uniformly distributed on R, then
its density is given by

f:lﬁ <y1a"'7yp)€R7

flys . yp) =
0 else.

= [For convenience, we can also use the indicator function:

P

Pl yp) = I Do),

o1 bi —a



= We then have

Y1
F(ylw"ayp):/ / ful,...,up>du1~--dup

P _
= ( bl (W) + I, oo)(M) :
=il

= Finally, note that we recover the univariate uniform
distribution by sending all components but one to infinity:

. r—a;
Fi(z) = Hm Fys, - 4p) = 3 —Tlaib (%) +jpi.oo) (2).
G Lo




Introduction to Copulas i

» Copula theory provides a general and powerful way to
model general multivariate distributions.
= The main idea is that we can decouple (and recouple) the
marginal distributions and the dependency structure
between each component.
= Copulas capture this dependency structure.
= Sklar's theorem tells us about how to combine the two.



Introduction to Copulas ii

Definition

A p-dimensional copula is a function C': [0, 1]? — [0, 1] that
arises as the distribuction function (CDF) of a random vector
whose marginal distributions are all uniform on the interval

0, 1].

In particular, we have



Introduction to Copulas iii

Probability integral transform
If Y is a continuous (univariate) random variable with CDF

Fy-, then
F(Y)~U(0,1).

Proof

P(Fy(Y) <) = P(Y < Fy'(z))
= Fy (Fy'(z))

=2x.
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Sklar's Theorem i

» Using the Probability integral transform, we can prove
one part of Sklar's theorem.

= More precisely, let Y = (Y1,...,Y},) be a continuous
random vector with CDF F’, and let F},..., F, be the
CDFs of the marginal distributions.

= We know that Fi(Y}),..., F,(Y,) are uniformly
distributed on [0, 1], and therefore the CDF of their joint
distribution is a copula C'.

11



Sklar's Theorem i

= By taking u; = Fj(y;), we get

F(y, - 9p) = C(Fi(y1), - - Fp(p))-

12



Sklar’'s Theorem iii

Theorem
Let Y = (Y3,...,Y,) be any random vector with CDF F', and

» - p
let F',..., F, be the CDFs of the marginal distributions.

There exist a copula C' such that

F(y177yp> :C<F1(y1)77FP(yP>> (1)
If the marginal distributions are absolutely continuous, then C'
is unique.

Conversely, given a copula C' and univariate CDFs Fy, ..., F},
then Equation 1 defines a valid CDF for a p-dimensional
random vector.

13



» Gaussian copulas: Let ® be the CDF of the standard
univariate normal distribution, and let ®x. be the CDF of
multivariate normal distribution with mean 0 and
covariance matrix . The Gaussian copula Cg is defined
as

Co(ug, ... up) = P (@ (uy), ..., 0 (uy)).

14



library(copula)

# Gaussian copula where correlation s 0.5

gaus_copula <- normalCopula(0.5, dim

= 2)
sample_copulal <- rCopula(1000, gaus_copula)

plot(sample_copulal)
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# Compare with independent copula,

# 1.e. two independent uniform wvartables.
gaus_copula <- normalCopula(0, dim = 2)
sample_copula2 <- rCopula(1000, gaus_copula)
plot(sample_copula2)
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Independent

Corr. 0.5
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Examples vii

For a properly chosen 6:

Name C(u,v)
Ali-Mikhail-Haq w0
Clayton max ((“_9 +o7? = 1)/, O)
Independence uv

20



Examples viii

# Clayton copula with theta = 0.5
clay_copula <- claytonCopula(param = 0.5)
sample_copulal <- rCopula(1000, clay_copula)

plot(sample_copulal)
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sample_copulal[,2]
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Conditional distributions

» Let fi, fo be the densities of random variables Y7, Y5,
respectively. Let f be the joint density.
» The conditional density of Y; given Y3 is defined as

f(y1,92)
faly2)

whenever f>(y2) # 0 (otherwise it is equal to zero).

flnly) =

= Similarly, we can define the conditional density in p > 2
variables, and we can also define a conditional density for
Yi,..., Y, given Yy, ..., Y.

24



Expectations

= Let Y =(Y1,...,Y,) be a random vector.
» Its expectation is defined entry-wise:

E(Y) = (EM),..., BE(Y,)).

= Observation: The dependence structure has no impact
on the expectation.

25



Covariance and Correlation i

» The multivariate generalization of the variance is the
covariance matrix. It is defined as

Cov(Y) = E ((Y = m)(Y = ") ,

where 1 = E(Y).
= Exercise: The (i,7)-th entry of Cov(Y) is equal to

Cov(Y;,Y;).

26



Covariance and Correlation ii

= Recall that we obtain the correlation from the covariance
by dividing by the square root of the variances.
» Let V' be the diagonal matrix whose i-th entry is Var(Y;).

= In other words, V' and Cov(Y) have the same diagonal.

= Then we define the correlation matrix as follows:
Corr(Y) = V"2Cov(Y)V 12,
= Exercise: The (i, 7)-th entry of Corr(Y) is equal to

Corr(Y;, Y;).

27



= Assume that

4 1 2
Cov(Y)=1[1 9 -3
2 =3 25

= Then we know that

<
I

[en BN an BN

o © O

[\

(@)}
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= Therefore, we can write

05 0 0
v12=1,0 033 0
0 0 02

= We can now compute the correlation matrix:

29



05 0 0 4 1 2 05 0 0
0 033 0 1 9 -3 0 033 0
0 0 02/ \2 -3 25 0 0 02

1 017 0.2
017 1 0.2
02 —-02 1
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Measures of Overall Variability

= |n the univariate case, the variance is a scalar measure of
spread.

= |n the multivariate case, the covariance is a matrix.

= No easy way to compare two distributions.

= For this reason, we have other notions of overall
variability:

1. Generalized Variance: This is defined as the
determinant of the covariance matrix.

GV (Y) = det(Cov(Y)).

2. Total Variance: This is defined as the trace of the

covariance matrix.

TV(Y) = tr(Cov(Y)). .



A <- matrix(c(5, 4, 4, 5), ncol = 2)

results <- eigen(A, symmetric = TRUE,
only.values = TRUE)

c("GV" = prod(results$values),

"TV" = sum(results$values))

## GV TV
##* 9 10

32



# Compare this with the following
B <- matrix(c(5, -4, -4, 5), ncol = 2)

# GV(A) = 9; TV(4) = 10

c("GV" = det(B),
"TV" = sum(diag(B)))

## GV TV
##* 9 10

33



Measures of Overall Variability (cont’d)

= As we can see, we do lose some information:

= |n matrix B, we saw that the two variables are
negatively correlated, and yet we get the same values

» But GV captures some information on dependence that
TV does not.

= Compare the following covariance matrices:

0 ()

» Interpretation: A small value of the sampled Generalized
Variance indicates either small scatter in data points or
multicollinearity.

34



Geometric Interlude i

= A random vector Y with positive definite covariance
matrix 2 can be used to define a distance function on RP?:

d(z,y) = /(& — y)TS 1z — y).

» This is called the Mahalanobis distance induced by 3.
» Exercise: This indeed satisfies the definition of a
distance:
1. d(z,y) = d(y, )
2. d(z,y) >0and d(z,y) =0 =y
3. d(x,2) <d(z,y)+d(y, 2)

35



Geometric Interlude ii

= Using this distance, we can construct hyper-ellipsoids in
R? as the set of all points x such that

d(z,0) = 1.

= Equivalently:
TE g = 1.

= Since ¥ 7! is symmetric, we can use the spectral
decomposition to rewrite it as:

P

-1 —1, T

2= N,
i=1

where A\q, ..., A\, are the eigenvalues of X.

36



Geometric Interlude iii

= We thus get a new parametrization if the hyper-ellipsoid:

P (oTx\?
L = Il
> (%)

» Theorem: The volume of this hyper-ellipsoid is equal to

2mP/2

MV

» In other words, the Generalized Variance is proportional

s Ap-

to the square of the volume of the hyper-ellipsoid defined
by the covariance matrix.

= Note: the square root of the determinant of a matrix (if
it exists) is sometimes called the Pfaffian.

37



Statistical Independence

= The variables Y7, ...,Y) are said to be mutually
independent if

F(ys, - 49) = F(y1) - F(yp).

= IfY),...,Y, admit a joint density f (with marginal
densities fi, ..., f,), and equivalent condition is

f(ylw-wyp):f(yl)"'f(yp)‘

= Important property: If Y;,... Y, are mutually
independent, then their joint moments factor:

B+ Yr) = B(Y™) -+ B(Y”).

38



Linear Combination of Random Variables

» Let Y =(Y3,...,Y],) be arandom vector. Let A be a
q X p matrix, and let b € RY.

= Then the random vector X := AY + b has the following
properties:
= Expectation: E(X) =AE(Y) +b;
= Covariance: Cov(X) = ACov(Y)AT

39



Transformation of Random Variables i

= More generally, let A : R? — R? be a one-to-one function
with inverse h=! = (hy',... h;1). Define X = h(Y).

»p
s Let J be the Jacobian matrix of h=!:

ohyt oyt
Oy Oyp
ohy ' omy!
oy1 Oyp

= Then the density of X is given by
g(@1,- - xp) = f(hT (@), ., By H(@p)) | det(J)].

40



Transformation of Random Variables

» A few comments:
= This result is very useful for computing the density of
transformations of normal random variables.
= If his a linear transformation Y — AY, then J = A~!
(Exercise!).
= See practice problems for further examples (or go back
to your notes from mathematical statistics).

41



Characteristic function

= We will make use of the characteristic function ¢y of a
p-dimensional random vector Y.

= The function ¢y : R? — C is defined as the expected
value

py(t) = B(exp(it"Y)),

where 72 = —1.

» Note: The characteristic function of a random variable
always exists.

» Example: The characteristic function of the constant
random variable ¢ is p(t) = exp(it’c).

42



= Take the density of a normal distribution:

fla;p,0%) = 21 eXp<—(x_“)2>-

mo? 202

= Using the definition, we get

43



o(t) = '/oo exp(itx) ! exp (_(m—u)2> dx

NS vV 2mo? 202
L S O (2% — 2ux + p? — 2ito*x) o
e V2o 2 202
1

2 _ 2 2
exp (@ =2(p tito?)z 4+ p°) .
202

44



Example | iii

» Let's complete the square:

2 —2(u+itod)z + p? = (m — (u+ ita2))2
+ (12 = (n+ito)?)
= (m — (e + itaQ))Q
- (/LZ — (p? + 2ituo® — (t02)2))
=(z—(u+ itJQ))Q
+ ((t02)2 — 2@'25#02) .

45



= We thus get

o(t)

((t02)2—21t,uo'

=€

[ o (FE it g,

t?0?
= exp (—2 + itu) :

46



= Take the density of a gamma distribution:

' _ B exp(—fx)
f(l’,(l/,ﬁ) - F(Oé) .

= Using the definition, we get

o(t) = /OOO exp(itz) 6axa_re();1))(—ﬂa:)dx
iy e a5 i
(8 —it)* Jo (o)
B e B ire e iy
=07 b (o)

dx

dx
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Properties of the characteristic function i

1.
2.
3.
4.
5.
6.

py(0) =1
loy ()| < 1 for all t

oy (=t) = py(t)

@y (t) is uniformly continuous.

If Y = AX + b, then py(t) = exp(itTb)px (ATt)

Two random vectors are equal in distribution if and only if
their characteristic functions are equal.

7. The components of Y = (Y3,...,Y},) are mutually
independent if and only if oy (t) = [T}, @y, (t;).

48



Properties of the characteristic function

Levy Continuity Theorem
Let Y, be a sequence of p-dimensional random vectors, and

let ©,, be the characteristic function of Y,,. Then Y,
converges in distribution to Y if and only if the sequence ¢,
converges pointwise to a function ¢ that is continuous at the
origin. When this is the case, the function ¢ is the
characteristic function of the limiting distribution Y.

49



= Let X,, be Poisson with mean n.
» Exercise: The characteristic function of a Pois(u)
random variable is ¢(t) = exp (u(e — 1)).
s LetY, = % be the standardized random variable.
» To show: Y, converges in a distribution to a standard
normal random variable.

» From the properties above, we have

v, (t) = exp(—itn/v/n)ex, (t/v/n)
= exp (n(eit/\/ﬁ —-1)— ztn/\/ﬁ) :

50



= We will show that this converges to the characteristic
function of the standard normal: o(t) = exp(—t%/2).
= We will use a change of variables and the Taylor
expansion of the exponential distribution around 0.
= First, define u = it/\/n. We then get n = —t*/u? (here
we fix t).

= Note that ©u — 0 is now equivalent to n — oc.

51



= Recall the Taylor expansion: as v — 0, we have

2
u
exp(u) = 1+u+ o +o(u),

where o(u?) represents a quantity that goes to zero faster
than u?.

52



= We then get

. t2 t2
it/v/n _ =~ (e*—1 v
n(e 1) —itn/v/n u2( )+ ”
t2 2 ) 2
2,
w2 TRty
2 t?
=7 ")

53



= Since the second term goes to zero as u — 0, we can
conclude that

. —¢2
n(e”/‘/ﬁ—l)—itn/\/ﬁ%T, n — 0o.

» And since the exponential function is continuous
everywhere, we get
42
oy, (t) — exp (2> for all ¢, n — oo.

= The result follows from the Levy Continuity Theorem.
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Weak Law of Large Numbers

= We can prove the multivariate (weak) Law of Large
Numbers using the Levy Continuity theorem.

WLLN
Let Y, be a random sample with characteristic function ¢ and

mean . Assume ¢ is differentiable at the origin. Then
%22:1 Y, — p in probability as n — oo.

55



Proof (WLLN) i

= First, note that since ¢ is differentiable at the origin, we
have ¢'(0) = ip.
= We can look at the Taylor expansion of ¢ around 0:

o(t) = 1+t50'(0) +o(t) = 1 + it u + o(t).

= Now note that the characteristic function of £ >-7_, Y} is
n

given by

56






Proof (WLLN) iii

= Using the Taylor expansion of ¢, we get

en(t) = ¢ (t)n

n

() )

» The left-hand side converges to the exponential
distribution:

on(t) = exp(it” p).

» But this is simply the characteristic function of the
constant random variable . [

58



Cramer-Wold Theorem

Two random vectors X and Y are equal in distribution if and
only if the linear combinations t*X and t”'Y are equal in
distribution for all vectors t € RP.

Proof
Let ¢x, @y be the characteristic functions of X and Y,

respectively. Let s € R. Using the definition, we can see that

pirx(s) = E(exp(is(t' X))) = E(exp(i(st)" X)) = px(st).

The result follows from the uniqueness of characteristic
functions. [
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Multivariate Slutsky’s Theorem i

Let X,, be a sequence of g-dimensional random vectors that
converge in distribution to X, and let Y,, be a sequence of
p-dimensional random vectors that converge in distribution to
a constant vector ¢ € RP. Then for any continuous function
f: Rt — R¥ we have

(X, Y,) = f(X,c) in distribution.
= Common examples of f include:

. f(X,Y) =X+Y
» f(X)Y) = XTY when p =gq.

60



Multivariate Slutsky’s Theorem ii

= Note that both X,, or Y,, could be matrices:

= This follows from the correspondence between the space
of n X p matrices and R" given by stacking the
columns of a matrix into a single column vector.

= For example, if A,, are r x ¢ matrices converging to A,

then we could conclude

A, X, — AX.

61



Proof (Slutsky) i

» By the Continuous mapping theorem, it is sufficient to
show that

(X, Y,) = (X,c) in distribution.
» For any u € R?, v € R?, the Cramer-Wold theorem

implies

u'X, - u’'X

vy, = vle.

62



Proof (Slutsky) ii

= From the univariate Slutsky's theorem, we get
X, +v'Y, - u' X +vle.

= If we let w = (u, V), we have just shown that, for all
w € RI™P we have

wl (X, Y,) = w (X, c).

= Using once more the Cramer-Wold theorem, we can
conclude the proof of this theorem. [
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Sample Statistics i

» Let Yy,...,Y, be arandom sample from a p-dimensional
distribution with mean p and covariance matrix X..
= Sample mean: We define the sample mean Y, as

follows:
_ 1 n
Yn =S Yi-

» Properties:
= E(Y,)=p(i.e. Y, is an unbiased estimator of 1);
1
_ 1y
n

= From WLLN: Y,, — u in probability.
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Sample Statistics i

= Sample covariance: We define the sample covariance
S,, as follows:

» Properties:
» E(S,) = 21X (i.e. S, is a biased estimator of X);
» If we define S,, with n instead of n — 1 in the
denominator above, then E(S,) = X (i.e. S, is an

unbiased estimator of X).
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Multivariate Central Limit Theorem

Let Yq,...,Y, be arandom sample from a p-dimensional
distribution with mean p and covariance matrix . Then

v (Yn - u) — N,(0,%).

Proof
This follows from the Cramer-Wold theorem and the univariate

CLT (Exercise).
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» Let Yy,...,Y, bearandom sample from a p-dimensional
distribution with mean p and covariance matrix X..
= Exercise: E(Y, YD) =3+ puu’.
» Using Slutsky's theorem and the WLLN, we will show

that S,, — X.
= By the WLLN, we have that

1 n
Y, Y] =>4 pup”
(L
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= We then have that

S, = ;ZZ:;(YZ -Y,)(Y;-Y,)"
_ i znj (VYT - ¥, Y7 - v, ¥ + ¥, ¥])
i=1
_ 711 SYYT - ¥, Y - Y, 4 VYT
i=1
— (i zn:YiYiT> -Y,. Y 5% (Slutsky).
i=1
» Butsince S, = 1S, we also have S,, — X. O]

n
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Multivariate Delta Method i

Let Y, be a sequence of p-dimensional random vectors such

that
vn (Y, —c) —Z in distribution,

where ¢ € RP. Furthermore, assume g : RP — R? is
differentiable at ¢ with derivative Vg(c). Then

v (g(Y,) — g(c)) — Vg(c)Z in distribution.
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Multivariate Delta Method ii

In other words, we can derive useful approximations: if Y, is a
random sample with mean ¢ and covariance matrix X:

= E(9(Yn)) = g(c);
= Var(g(Yys)) ~ Vg(c)EVyg(c)".
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= By the Central Limit Theorem, we have
v (Yo — i) = Ny(0,%).
= From the Delta method, we get
Vi (9(¥n) = () = Ny(0, V() SV (1)),
= For example, if Y,, > 0, then we have
Vi (log(¥,) —log() — N, (0, i),
where log is applied entrywise, and fi = (uy ', ..., 1, 0).
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