Penalized Regression

Max Turgeon

STAT 7200-Multivariate Statistics

Objectives

- Introduce ridge regression and discuss the bias-variance
trade-off
- Introduce Lasso regression and discuss variable selection

- Discuss cross-validation for parameter tuning

Recall: Least Squares Estimation i

- Let Yy...,Y, bearandom sample of size n, and let
X4, ..., X, be the corresponding sample of covariates.
- Y, and X are of dimension p and ¢, respectively.
- We will write Y and X for the matrices whose #-th row is Y
and X;, respectively.
- From the linear model assumption, we can then write
E(Y |X)=XB.

- The least-squares criterion is given by

LS(B) =tr (Y — XB)"(Y — XB)]| .

Recall: Least Squares Estimation ii

- The minimum is attained at at
B = (XTX)"xTy.
- The least-squares estimator is unbiased:
E(B|X)=B.
- If we let BZ be the ¢-th column of E we have
Cov(B;, ;) = 04;(XTX) 1,

where 0;; is the (4, j)-th entry of ¥ = Cov (Y; | X;).

Multicollinearity

- As we can see, the variance of the regression coefficients
depend on the inverse of X7 X.
- Multicollinearity is when the columns of X are almost linearly
dependent.
- Note: This can happen when a covariate is almost constant.
- As a consequence, XTX is nearly singular, and therefore the

variance of the regression coefficients can blow up.

Ridge regression

- Solution: Add a small positive quantity along the diagonal of
XTX.
- XTX = XTX 4+ AT
- The Ridge estimator of B is given by

Br = (XX + ML) 'XTY.

library(tidyverse)
url <- "https://maxturgeon.ca/w20-stat7200/prostate.csv”
prostate <- read_csv(url)

Separate into training and testing sets

data_train <- filter(prostate, train == TRUE) %>%
dplyr::select(-train)

data_test <- filter(prostate, train == FALSE) %>%
dplyr::select(-train)

OLS
modell <- 1m(lpsa ~ .,

data = data_train)
predl <- predict(modell, data_test)

mean((data_test$lpsa - predl)”2)

[1] 0.521274

Ridge regression
X_train <- model.matrix(lpsa ~ .,
data = data_train)

Y_train <- data_train$lpsa

B_ridge <- solve(crossprod(X_train) + diag(0.7, 9),
t(X_train)) %*% Y_train

IIEHHHingIHIII

X_test <- model.matrix(lpsa ~ .,
data = data_test)

pred2 <- X_test %*% B_ridge
mean((data_test$lpsa - pred2)”2)

[1] 0.5180924

Compare both estimates
head(cbind(coef(model1), B_ridge))

IIEHHHHHHiII

[,1] [,2]
(Intercept) 0.42917013 0.1323063
lcavol 0.57654319 0.5709660
##t lweight 0.61402000 0.6160020
#tt age -0.01900102 -0.0173843
1bph 0.14484808 0.1395858

svi 0.73720864 0.6683160

Bias-Variance tradeoff i

- The ridge estimator is biased:

E(Br | X) = (XTX 4+ M) 'XE(Y | X)
= (X'X +) 'X'XB
+ B.

- But the variance is potentially smaller:
Cov(Bs, B;) = 03 (XTX 4+ ML) ' XTX(XTX 4+ AL,) .

- This is an example of the classical bias-variance tradeoff:

- We increase bias and decrease variance.

Bias-Variance tradeoff ii

- Ideally, this is done in such a way to reduce the mean squared

error:

MSE = itr (Y - 1)"(Y - V)] .

- Should we compute the MSE with the training of the test data?

Example (cont’d) i

mse_df <- purrr::map_df(seq(0, 5, by = 0.1),
function(lambda) {
B_ridge <- solve(crossprod(X_train) + diag(lambda, 9),
t(X_train)) %*% Y_train
pred2 <- X_test %*% B_ridge

mse <- mean((data_test$lpsa - pred2)”2)
return(data.frame(MSE = mse,

lambda = lambda))
b

Example (cont’d) ii

ols_mse <- mean((data_test$lpsa - predl)”2)

ggplot(mse_df, aes(lambda, MSE)) +
geom_line() + theme_minimal() +
geom_hline(yintercept = ols_mse)

Example (cont’d) iii

0.522

0.521

0.520

MSE

0.519

0.518

lambda

Regularized regression

- The ridge estimator can also be defined as a solution to a

regularized least squares problem:
LSr(B; \) = tr [(Y — XB)"(Y — XB)| + Atr (B"B) .

- Yet another way to define the ridge estimator is as a solution to
a constrained least squares problem:

min tr (Y -xB)"(Y-XB)], tr(B"B)<c

Solution path i

library(glmnet)

Fit for multiple values of lambda
X_train <- model.matrix(lpsa ~ . - 1,
data = data_train)
ridge_fit <- glmnet(X_train, data_train$lpsa,
alpha = 0,
lambda = seq(®, 5, by = 0.1))

Solution path ii

Plot the value of the coefficients
as a function of lambda
plot(ridge_fit, xvar = "lambda”)
abline(h = 0, 1ty = 2)

Solution path iii

0.6
|

Coefficients

0.2

0.0
|

Log Lambda

20

Constrained regression

B

B, B,

21

Lasso regression

- Lasso regression puts a different constraint on the size of the
regression coefficients B:
- Ridge regression: tr (BTB) =2 Bizj <ec
+ Lasso regression: || Bll1 = >_,;|Bij| < c
- Just as with ridge regression, this is also equivalent to a

regularized least squares problem:
LSy(B;) = tr [(Y = XB)"(Y — XB)| + A|| Bl

- Major difference: Lasso regression performs variable selection.

22

Example (cont’d) i

Fit lasso regression along the same lambda sequence
lasso_fit <- glmnet(X_train, data_train$lpsa,
alpha = 1, # For lasso regression
lambda = seq(®, 5, by = 0.1))

X_test <- model.matrix(lpsa ~ . - 1,
data = data_test)
lasso_pred <- predict(lasso_fit, newx = X_test)
lasso_mse <- apply(lasso_pred, 2, function(col) {
mean((data_test$lpsa - col)”2)
B

23

Example (cont’d) ii

lasso_mse_df <- data.frame(MSE = lasso_mse,
lambda = seq(0, 5, by = 0.1))
ggplot(mse_df, aes(lambda, MSE)) +
geom_line() + theme_minimal() +
geom_hline(yintercept = ols_mse) +

geom_line(data = lasso_mse_df, colour = 'red')

24

Example (cont’d) iii

lambda

25

Example (cont'd) iv

Plot the value of the coefficients
as a function of lambda
plot(lasso_fit, xvar = "lambda”)
abline(h = 0, 1ty = 2)

26

Example (cont’d) v

5 3 0 0
©
2 4
<
34
a
€
Q2
°
=
Q
o o
O o 7
o
o
o~
g d
]
T T T T
-2 <l 0 1
Log Lambda

27

Example (cont’d) vi

Where is the min MSE?
filter(lasso_mse_df, MSE == min(MSE))

MSE lambda
##t 1 0.4526232 4.9

What are the estimates?
coef(lasso_fit, s = 4.9)

28

Example (cont’d) vii

9 x 1 sparse Matrix of class "dgCMatrix”
H#it 1
(Intercept) 2.452345
Tlcavol

lweight

##t age

1lbph

svi

lcp

gleason

##t pggLs

29

Comments

- There are other forms of penalized regression:
- Elastic net, SCAD, adaptive lasso, group lasso, etc.

- They each have different asymptotic and finite sample
properties.

- E.g Lasso is asymptotically biased; Elastic net and SCAD are
asymptotically unbiased.

- In general, how do we select A when we don't have a test set?

- Answer: Cross-validation.

30

K-fold cross-validation

- Goal: Find the value of A that minimises the MSE on test data.

- K -fold cross-validation (CV) is a resampling technique that
estimates the test error from the training data.

- Itis also an efficient way to use all your data, as opposed to

separating your data into a training and a testing subset.

31

Let ' > 1 be a positive integer.

1. Separate your data into K subsets of (approximately) equal
size.

2. Fork=1,..., K, putaside the k-th subset and use the
remaining ' — 1 subsets to train your algorithm.

3. Using the trained algorithm, predict the values for the held out
data.

4. Calculate M S E), as the Mean Squared Error for these
predictions.

5. The overall MSE estimate is given by

1 K
MSE = = MSE;.
K k=1

32

Take all the data
dataset <- dplyr::select(prostate, -train)
dim(dataset)

[1] 97 9

set.seed(7200)

library(caret)

5-fold CV

trainIndex <- createFolds(dataset$lpsa, k = 5)

str(trainIndex)

33

List of 5
$ Foldl:
$ Fold2:
$ Fold3:
$ Folds:
$ Fold5:

#it
Hit
Hit
Hit
Hit

int
int
int
int

int

[1:
[1:
[1:
[1:
[1:

20]
19]
19]
19]
20]

8 22 23 25 27 28 32 41 46 ...
7 15 18 20 26 29 42 44 45 ...
11 19 21 24 30 33 48 49 50 ...
4 10 12 16 31 34 35 39 43 ...
9 13 14 17 36 37 38 40 47 ...

34

Define function to compute MSE
compute_mse <- function(prediction, actual) {
Recall: the prediction comes in an array
apply(prediction, 2, function(col) {
mean((actual - col)"2)

b

35

IIHHHHiiHIHII

MSEs <- sapply(trainIndex, function(indices){

X_train <- model.matrix(lpsa ~ . - 1,

data = dataset[-indices,])
Y_train <- dataset$lpsal-indices]
X_test <- model.matrix(lpsa ~ . - 1,

data = dataset[indices,])
lasso_fit <- glmnet(X_train, Y_train, alpha = 1,

lambda = seq(®, 5, by = 0.1))

lasso_pred <- predict(lasso_fit, newx = X_test)

compute_mse(lasso_pred, dataset$lpsalindices])

b

36

IIEHHHHHHiII

Each column is for a different fold
dim(MSEs)

[1] 51 5
CV_MSE <- colMeans(MSEs)

seq(0, 5, by = 0.1)[which.min(CV_MSE)]

[1] 0.4

37

IIHHHHiiHIiiIII

What are the estimates?
coef(lasso_fit, s = 0.4)

9 x 1 sparse Matrix of class "dgCMatrix”

1
(Intercept) 1.63646053
lcavol 0.37816202
lweight 0.08802054
age

1lbph
##t svi

38

IIHHHIHHHEiIiiiII

##t lcp
gleason
pgg4s

Conveniently, glmnet has a function for CV

It also chooses the lambda sequence for you

X <- model.matrix(lpsa ~ . -1, data = dataset)

lasso_cv_fit <- cv.glmnet(X, dataset$lpsa, alpha = 1,
nfolds = 5)

lasso_cv_fit$lambda.min,
lasso_cv_fit$lambda.1lse)

c(”lambda.min”

"lambda.1lse”

39

IIEHHHiHEiIHI'II

lambda.min lambda.lse
0.03250172 0.14400281

What are the estimates?

coef(lasso_cv_fit, s = 'lambda.min')

9 x 1 sparse Matrix of class "dgCMatrix”

#H 1
(Intercept) 0.161190494
lcavol 0.508157223
lweight 0.552486889

##t age -0.009374709

40

IIHHHHiiHIHII

1lbph

svi

##t lcp

gleason
pgg4b

1 SE rule

coef(lasso _cv_fit, s = 'lambda.lse')

0.064736544
0.594693519

0.004797184
0.002351087

41

IIEHHHHHHiII

9 x 1 sparse Matrix of class "dgCMatrix”

H#it 1
(Intercept) 0.2975535
Tlcavol 0.4725492
lweight 0.3989087
##t age

1lbph .

svi 0.4400593
lcp

gleason

##t pgghs

42

- Regularized regression can help reduce the mean-squared error,
especially in the presence of multicollinearity
- Ridge regression: Penalizes the L2 norm of the coefficients
- Lasso regression: Penalizes the L1 norm of the coefficients
- Unlike ridge regression, lasso regression also performs variable
selection.

- But this comes at a cost: post-selection inference.

- K -fold cross-validation can be used to find the best value of A.

43

