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Eigenvalues

» Let A be a square n X n matrix.

= The equation
det(A — \,,) =0

is called the characteristic equation of A.
» This is a polynomial equation of degree n, and its roots
are called the eigenvalues of A.



(A <- matrix(c(1l, 2, 3, 2), ncol = 2))

#it [,1] [,2]
## [1,] 1 3
## [2,] 2 2

eigen(A)$values

# [1] 4 -1



A few properties

Let Ay,..., A, be the eigenvalues of A (with multiplicities).

2. det(A) =TI A\
3. The eigenvalues of A* are \¥ ... \F for k a

nonnegative integer;
4. If A is invertible, then the eigenvalues of A~! are

AT LA
5. If A is symmetric, all eigenvalues are real. (Exercise:
Prove this.)



= If X is an eigenvalue of A, then (by definition) we have
det(A — \,,) = 0.
= In other words, the following equivalent statements hold:
= The matrix A — A1, is singular;
= The kernel space of A — AI,, is nontrivial (i.e. not equal
to the zero vector);
= The system of equations (A — AI,,)v =0 has a
nontrivial solution;
= There exists a nonzero vector v such that

Av = .

= Such a vector is called an eigenvector of A.



Example (cont’d)

eigen(A)$vectors

#it [,1] [,2]
## [1,] -0.7071068 -0.8320503
## [2,] -0.7071068 0.5547002



Spectral Decomposition

Theorem
Let A be an n X n symmetric matrix, and let \; > --- >\,

be its eigenvalues (with multiplicity). Then there exist vectors
V1, ..., VU, such that

Av; = \jv;, i.e. v; is an eigenvector, for all 7;

. If i # j, then v]v; = 0, i.e. they are orthogonal;

. For all ¢, we have viTvi =1, i.e. they have unit norm;
. We can write A = Y7, ol

~ o

In matrix form: A = VAV, where the columns of V are the
vectors v;, and A is a diagonal matrix with the eigenvalues \;
on its diagonal.



Positive-definite matrices

Let A be a real symmetric matrix, and let Ay > --- > )\, be

its (real) eigenvalues.

1.
2.

If \; > 0 for all 7, we say A is positive definite.

If the inequality is not strict, if \; > 0, we say A is
positive semidefinite.

Similary, if \; < 0 for all 4, we say A is negative definite.
If the inequality is not strict, if \; < 0, we say A is
negative semidefinite.

Note: If A is positive-definite, then it is invertible!



Matrix Square Root i

= Let A be a positive semidefinite symmetric matrix.

By the Spectral Decomposition, we can write
A = PAPT.

= Since A is positive-definite, we know that the elements
on the diagonal of A are positive.

= Let A2 be the diagonal matrix whose entries are the
square root of the entries on the diagonal of A.

» For example:

A (15 0L e (12247 0 )
0 05 0  0.7071



Matrix Square Root ii

= We define the square root A'/2 of A as follows:
A2 .= PAV2PT,

= Check:

A1/2A1/2 _ (PAl/QPT)<PA1/2PT)

= PAY2(PTP)AY2PT

= PAY2AY2PT (P is orthogonal)
= PAPT

=A.
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Matrix Square Root iii

» Be careful: your intuition about square roots of positive
real numbers doesn't translate to matrices.

= In particular, matrix square roots are not unique (unless
you impose further restrictions).
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Cholesky Decomposition

= Another common way to obtain a square root matrix for
a positive definite matrix A is via the Cholesky
decomposition.
= There exists a unique matrix L such that:
= L is lower triangular (i.e. all entries above the diagonal
are zero);
= The entries on the diagonal are positive;
» A=LLT
» For matrix square roots, the Cholesky decomposition
should be prefered to the eigenvalue decomposition
because:
= [t is computationally more efficient;
= [t is numerically more stable.
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A <- matrix(c(1, 0.5, 0.5, 1), nrow = 2)

# Eigenvalue method

result <- eigen(A)

Lambda <- diag(result$values)

P <- result$vectors

A_sqrt <- P %xJ% Lambda~0.5 %x*% t(P)

all.equal(A, A_sqrt %*J A_sqrt) # CHECK

## [1] TRUE
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# Cholesky method
# It's upper triangular!
(L <- chol(A))

#it [,1] [,2]
# [1,] 1 0.5000000
# [2,] 0 0.8660254

all.equal(A, t(L) %*% L) # CHECK

## [1] TRUE
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Singular Value Decomposition i

» We saw earlier that real symmetric matrices are
diagonalizable, i.e. they admit a decomposition of the
form PAPT where

= A is diagonal,
= P is orthogonal, i.e. PPT = PTpP =1,

» For a general n x p matrix A, we have the Singular Value
Decomposition (SVD).

s We can write A = UDV7”, where

= U is an n X n orthogonal matrix;
= V is a p X p orthogonal matrix;
= D is an n x p diagonal matrix.
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Singular Value Decomposition

» We say that:

= the columns of U are the left-singular vectors of A;
= the columns of V' are the right-singular vectors of A;
= the nonzero entries of D are the singular values of A.
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set.seed(1234)

A <- matrix(rnorm(3 * 2), ncol = 2, nrow = 3)
result <- svd(A)

names (result)

## [1] udn nuu IIVH

result$d

## [1] 2.8602018 0.6868562
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result$u

#it [,1] [,2]
## [1,] -0.9182754 -0.359733536
## [2,] 0.1786546 -0.003617426
## [3,] 0.3533453 -0.933048068

result$v

## [,1] [,2]
## [1,] 0.5388308 -0.8424140
## [2,] 0.8424140 0.5388308
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D <- diag(result$d)
all.equal(A, result$u %*% D %x% t(result$v)) #CHECK

## [1] TRUE
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# Note: crossprod(4) == t(4) *J A
# tcrossprod(4) == A J*} t(4)

U <- eigen(tcrossprod(A))$vectors
V <- eigen(crossprod(A))$vectors

D <- matrix(0, nrow = 3, ncol = 2)
diag(D) <- result$d

all.equal(A, U %x*% D %*% t(V)) # CHECK

## [1] "Mean relative difference: 1.95887"
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# What went wrong?
# Recall that eigenvectors are unique

# only up to a sign!

# These elements should all be positive
diag(t(U) %% A %% V)

## [1] -2.8602018 0.6868562
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# Therefore we need to multiply the

# corresponding columns of U or V

# (but not both!) by -1

cols_flip <- which(diag(t(U) %*% A %*) V) < 0)
V[,cols_flip] <- -V[,cols_flip]

all.equal(A, U %*)% D %x% t(V)) # CHECK

## [1] TRUE
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