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Objectives

- Review general theory of likelihood ratio tests
- Tests for structured covariance matrices

- Test for equality of multiple covariance matrices



Likelihood ratio tests i

- We will build our tests for covariances using likelihood ratios.

- Therefore, we quickly review the asymptotic theory for regular

models.

- Let Yq,..., Y, bearandom sample from a density pg with
parameter § € R,
- We are interested in the following hypotheses:

Hy: 0 € 0O, H,:0€ 0

where ©; C R4,



Likelihood ratio tests ii

- Let L(0) = T~ pe(Y;) be the likelihood, and define the
likelihood ratio

maXgeo, L(@)

A= i
maxgee,ue, L(0)

- Recall: we reject the null hypothesis Hy for small values of A.



Likelihood ratio tests iii

Theorem (Van der Wandt, Chapter 16)
Assume ©g, ©1 are locally linear. Under regularity conditions on p,

we have
—2log A — x2(k),

where k is the difference in the number of free parameters between
the null model ©q and the unrestricted model ©y U O;.

- Therefore, in practice, we need to count the number of free
parameters in each model and hope the sample size n is large

enough.



Tests for structured covariance matrices i

- We are going to look at several tests for structured covariance
matrix.

- Throughout, we assume Y1, ..., Y, ~ Ny(u, X) with 3
positive definite.

- Like other exponential families, the multivariate normal
distribution satisfies the regularity conditions of the theorem
above.

- Being positive definite implies that the unrestricted parameter
space is locally linear, i.e. we are staying away from the

boundary where > is singular.



Tests for structured covariance matrices ii

- A few important observations about the unrestricted model:

- The number of free parameters is equal to the number of
entries on and above the diagonal of X, which is p(p + 1)/2.

- The sample mean Y maximises the likelihood independently of
the structure of .

- The maximised likelihood for the unrestricted model is given by

) = exp(—np/2)
(2m)w/2 (5|2

M

L(Y,



Specified covariance structure i

- We will start with the simplest hypothesis test:
HO 5 Z = 20.

- Note that there is no free parameter in the null model.
- Write V' = n2. Recall that we have

LY, %) = (27) "5 ™2 exp <—;tr(21V)> |



Specified covariance structure ii

- Therefore, the likelihood ratio is given by
(@2m) 2|2 exp (—$tr(25V))
exp(—np/2)(2m)~"P/2| L]/
|30 ~/2 exp (—1tr(35'V))
-~ exp(—np/2)[n~tV|/2

e np/2 _ n 1 _
— (n> 125V "2 exp (—2tr(201V)).

« In particular, if Xo = I, we get

np/2 1
A= (e) V|2 exp <—2tr(V)) :

n



library(tidyverse)

# Winnipeg avg temperature

url <- paste0(”https://maxturgeon.ca/w20-stat7200/”,
"winnipeg_temp.csv”)

dataset <- read.csv(url)

dataset[1:3,1:3]

Hit temp_2010 temp_2011 temp_2012
## 1 -25.57500 -16.25417 -6.379167
## 2 -26.06250 -18.39583 -12.925000
## 3 -20.56667 -19.45833 -5.791667



n <- nrow(dataset)

p <- ncol(dataset)

V <- (n - 1)*cov(dataset)

# Diag = 14"2
# Corr 0.8
Sigma® <- diag(0.8, nrow = p)

diag(Sigma0) <- 1
Sigma® <- 14"2+Sigma0
Sigma®_invXV <- solve(Sigma0®, V)



lrt <- 0.5*n*p*(1 - log(n))

lrt <- lrt + 0.5*n*log(det(Sigma®_invXV))
lrt <- lrt - 0.5*sum(diag(Sigma®_invXV))
lrt <- -2*1lrt

df <- choose(p + 1, 2)
c(lrt, qchisq(0.95, df))

## [1] 5631.63409 73.31149



Test for sphericity i

- Sphericity means the different components of Y are
uncorrelated and have the same variance.

- In other words, we are looking at the following null hypothesis:
Hy:Y=0%, o°>>0.

- Note that there is one free parameter.

- We have

A

1
L(Y,0°L) = (2m) "l L exp (— (0% 5) V)

1
= (2m0?) """ exp (—wtr(\/)> .



Test for sphericity ii

- Taking the derivative of the logarithm and setting it equal to

zero, we find that L(Y, 021,)) is maximised when

5 trV
g% = ——.
np

- We then get

"~ —~ 1
L(Y,021,) = (2m02) "% exp <—2/§tr(V)>
o

AN np
= (2m) 2 (22 (-2).
any ™ (22) e (-1



Test for sphericity iii

- Therefore, we have

B (2m) /2 (ﬂ)_n‘pﬂ exp (—%)

np

exp(—np/2)(2m) P/ S| /2

()™
— N\ @D
- ‘n—l‘/’—n/Q

_< V] )"/2
\(&V/py)



Example (cont’d) i

lrt <- -2%0.5#*n*(log(det(V)) - p*log(mean(diag(V))))
df <- choose(p + 1, 2) - 1

c(lrt, qchisq(0.95, df))

## [1] 5630.79458 72.15322



Test for sphericity (cont’d) i

- Recall that we have
n/2
A (VY
(tV/pp)

- We can rewrite this as follows: let {; > --- > [, be the

eigenvalues of V. We have

(trV/p)r
P
_ J=1"

YA

p_ip\?
— Jj=17j
BREY
p 2j=1%



Test for sphericity (cont’d) ii

- In other words, the modified LRT A = A?/™ s the ratio of the
geometric to the arithmetic mean of the eigenvalues of V (all

raised to the power p).
- A result of Srivastava and Khatri gives the exact distribution of

A:
_H ( n—y—l)j(i—l—;)).



Example (cont’d) i

B <- 1000
dfl <- 0.5%(n - seq_len(p-1) - 1)
df2 <- seq_len(p-1)+(0.5 + 1/p)

# Critical values

dist <- replicate(B, {
prod(rbeta(p-1, df1, df2))
)



Example (cont’d) ii

# Test statistic

decomp <- eigen(V, symmetric = TRUE, only.values = TRUE)
ar_mean <- mean(decomp$values)

geo_mean <- exp(mean(log(decomp$values)))

lrt_mod <- (geo_mean/ar_mean)”p

c(lrt_mod, quantile(dist, 0.95))

Hit 95%
## 1.181561e-07 8.967361le-01

20



Test for independence i

- Decompose Y into k blocks:
Yi - (Ylia o000 7Yk’i)7

where Y j; ~ Ny, (15, X5;) and Z§=1 p; =Dp.

- This induces a decomposition on > and V:

Y1 o0 Xk Vie - Vi

21



Test for independence i

- We are interested in testing for independence between the

different blocks Y1;, ..., Yg;. This equivalent to
211 0
HO 5 Z =
0 ik

- Note that there are Z;‘f’:l pj(p; + 1)/2 free parameters.

- Under the null hypothesis, the likelihood can be decomposed

into k likelihoods that can be maximised independently.

22



Test for independence iii

- This gives us

k
— 2
max L H eXp np]/ )

271’ np]/2|2 |n/2
()
(2m ) 2 TTE_y |50/

- Putting this together, we conclude that
( V] )”/2
p— k-i .

j:1|vjj|

23



url <- paste0(”https://maxturgeon.ca/w20-stat7200/",
"blue_data.csv”)
blue_data <- read.csv(url)

names(blue_data)

## [1] "NumSold” "Price” "AdvCost” "SalesAs

dim(blue_data)

## [1] 10 4

24



Let's test for independence between
all four variables
<- nrow(blue_data)
<- ncol(blue_data)

T S H ==

V <- (n-1)+cov(blue_data)
lrt <- -2*(log(det(V)) - sum(log(diag(V))))

df <- choose(p + 1, 2) - p
c(lrt, qchisq(0.95, df))

25



## [1] 5.635124 12.591587

lrt > qchisq(0.95, df)

## [1] FALSE
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Test for equality of covariances i

- We now look at a different setting: assume that we collected K
independent random samples from (potentially) different

p-dimensional multivariate normal distributions:

Y1k7,YnkkNNp(/j,k,Ek), l{zl, K.

Y

- We are interested in the null hypothesis that all 2, are equal to

some unknown

Hy: Y, =%, foralk=1,..., K.

9
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Test for equality of covariances ii

- First, note that since the samples are independent, the full
likelihood is the product of the likelihoods for each sample:

K
L(ul,...,,uK,El,..., H ,uk,Zk

- Therefore, over the unrestricted model, the maximum likelihood

estimators are

(Y5, S5

- Note that the number of free parameters over the unrestricted
model is kp(p + 1) /2.

28



Test for equality of covariances iii

- Now, over the null model, the full likelihood is still maximised

when g = Yk. Hence, we get

K
L(Y1,...,. Y, 5, ..., 8) = [[ L(Yk, %)
k=1
K 1
(2m) o2 S| 2 exp (—Sti(E7MVA))
k=1

where Vk = nkf]k
- Writing n = Eszl ngand V = Zszl V3., we get

L(Yy,...,.Yg,%,...,0) =
1
— (21) /2| S| 2 exp <—2tr(2_1\/)> |

29



Test for equality of covariances iv

- This is the same expression as the one we would get by pooling
all the samples together. Therefore, the maximum likelihood
estimate is

5-ly
n
- Note that under the null model, there are p(p + 1) /2 free

parameters.

30



Test for equality of covariances v

- We can now compute the likelihood ratio:

A Lng""’,YKli"”’?)
LYy, ... Y5, 50, ..., SK)
_ (2m) " exp(—np/2)|5| /2
I (2m) —mep/2 exp(— 1 /2) [ S| /2
(2m)~"/2 exp(—np/2)|S| "/
(27)="/2 exp(—np/2) T, | | e/
D ek
I NN
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Test for equality of covariances vi

- In other words, the likelihood ratio test compares the
generalized variance of the pooled covariance with the product
of the generalized variances of the individuals covariances.

- From the general theory of LRTs, we get

(K —1)p(p+ 1)) '

—210gAzX2< >

32



Test for equality of covariances vii

## Example on producing plastic film
## from Krzanowski (1998, p. 381)
tear <- c(6.5, 6.2, 5.8, 6.5, 6.5, 6.9, 7.2,
6.9, 6.1, 6.3, 6.7, 6.6, 7.2, 7.1,
6.8, 7.1, 7.0, 7.2, 7.5, 7.6)
gloss <- c(9.5, 9.9, 9.6, 9.6, 9.2, 9.1, 10.0,
9.9, 9.5, 9.4, 9.1, 9.3, 8.3, 8.4,
8.5, 9.2, 8.8, 9.7, 10.1, 9.2)
opacity <- c(4.4, 6.4, 3.0, 4.1, 0.8, 5.7, 2.0,
3.9, 1.9, 5.7, 2.8, 4.1, 3.8, 1.6,
3.4, 8.4, 5.2, 6.9, 2.7, 1.9)
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Test for equality of covariances viii

Y <- cbind(tear, gloss, opacity)
Y low <- Y[1:10,]

Y_high <- Y[11:20,]

n <- nrow(Y); p <- ncol(Y); K <- 2
nl <- n2 <- nrow(Y_low)

34



Test for equality of covariances ix

Sig low <- (n1 - 1)=*cov(Y_low)/n1l
Sig _high <- (n2 - 1)*cov(Y_high)/n2
Sig_pool <- (n1*Sig_low + n2*Sig_high)/n

c("pool” = log(det(Sig_pool)),

"low” = log(det(Sig_low)),
"high” = log(det(Sig_high)))

#it pool low high
## -2.524791 -3.265178 -2.329143
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Test for equality of covariances x

1rt <- nxlog(det(Sig_pool)) -
nl+log(det(Sig_low)) -
n2+log(det(Sig_high))

df <- (K - 1)*choose(p + 1, 2)

c(lrt, qchisq(0.95, df))

## [1] 5.447396 12.591587

36



Box's M test i

- There are a few ways to get a better approximation of the null
distribution of A. First, note that we can rewrite it as

N Hle‘vkmﬂ npn/2

- We can create an unbiased test (i.e. it has the correct asymptotic
expectation) by replacing ng by n, — 1 and n with n — K:

N R e
= ‘V’(TL—K)/Q HkK:1<nk. _ 1)p(nk—1)/2 5

- This is equivalent to replacing f]k by the sample covariances SY.

37



Box's M test ii

- Note that we still have the same asymptotic result:

(K —1)p(p+ 1))
; .

—2log A* ~ \? (

- Box showed that you can further improve the approximation by

multiplying the test statistic by a constant. Set

LI | 1 2p2 +3p — 1
= (an—l_n—K> (6(p+1)(K—1)>‘

k=1

- Then we have

(1 — u)log A* & 32 ((K — Dp(p + 1)) ‘

2
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Example (cont’d) i

S_low <- cov(Y_low)
S_high <- cov(Y_high)
S_pool <- ((n1 - 1)*S_low + (n2 - 1)*S_high)/(n - K)

1rt2 <- (n - K)*log(det(S_pool)) -
(n1 - 1)*log(det(S_low)) -
(n2 - 1)+log(det(S_high))

c(lrt, 1rt2, qchisq(0.95, df))

## [1] 5.447396 4.902657 12.591587
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Example (cont’d) ii

u <- (2%p”2 + 3xp - 1)/(6%(p + 1)*(K - 1))
u<-u=*((nl - 1){-1} + (n2 - 1)"{-1} - (n - K)*{-1})
lrt3 <- lrt2*(1 - u)

c(lrt, 1rt2, 1lrt3, qchisq(0.95, df))

## [1] 5.447396 4.902657 4.017455 12.591587

40



IIIHHiHiiHHHHHiIiIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

# You can also visualize the covariances----
library(heplots)

rate <- gl(K, 10, labels = c(”Low”, "High"”))
boxm_res <- boxM(Y, rate)

# You can plot the log generalized variances

# The plot function adds 95% CI
plot(boxm_res)

41



Visualization

pooled | L |
High [ O |
Low l @ |
T T T T T
-4 -3 -2 -1 0

log determinant
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‘IiHHHHHHHHiHiIiiIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

# Finally you can also plot the ellipses

# as a way to compare the covariances

covEllipses(Y, rate, center = TRUE,
label.pos = 'bottom')

43



Visualization iv

0.5

gloss
0.0
L

-0.5
L

-1.0

tear

Lh



IIIHHiHiHHHHHHHIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

# Or all pairwise comparisons together
covEllipses(Y, rate, center = TRUE,
label.pos = 'bottom',

variables = 1:3)
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Visualization vi
tear




Asymptotic expansions for likelihood ratio tests i

- Box's correction of the LRT for equality of covariances is part of
a general theory of asymptotic expansions for LRTs.
- The frameword allows for approximations of the null
distribution of some LRTs to any degrees of accuracy.
- We won't go into the details of such expansions, but we will look
at one example.

- If you want more details, see this:
https://maxturgeon.ca/w20-stat7200/test-
sphericity-details.pdf

47


https://maxturgeon.ca/w20-stat7200/test-sphericity-details.pdf
https://maxturgeon.ca/w20-stat7200/test-sphericity-details.pdf

Asymptotic expansions for likelihood ratio tests ii

- In the context of the test for sphericity, the approximation result

looks like this:

—1) — (2p? 2 1
—2 bp(n —1) — 2p"+p+2) log A ~ x? (p(p—l—l)—l),
6pn 2

where A is the likelihood ratio.
- This is known also known as Bartlett's correction.

- Note that we are correcting both the test statistic (by
multiplying by a positive constant) and the degrees of freedom

(we lose one degree of freedom).

48



‘IIiiHHIHHiHiIiIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

set.seed(7200)

# Simulation parameters
n <- 10

p <- 2

B <- 1000

49



IIEiHHHIHHiiHIIiIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

# Generate data
lrt_dist <- replicate(B, {

Y <- matrix(rnorm(nxp), ncol = p)

V <- crossprod(Y)

# log Lambda

0.5#n*(log(det(V)) - p*log(mean(diag(V))))
)

# General asymptotic result
df <- choose(p + 1, 2)

general_chisq <- rchisq(B, df = df)

50



IIEiHHHIHHHHHIiIiIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

# Bartlett's correction

df <- choose(p + 1, 2) - 1

const <- (6#p*(n-1) - (2*p™2 + p + 2))/(6%p=*n)
bartlett_chisq <- rchisq(B, df = df)/const
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IIEiHHHIHHHHIIHIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

# Plot empirical CDFs
plot(ecdf(-2*1lrt_dist), main = "-2 log Lambda”)
lines(ecdf(general_chisq), col = 'blue')
lines(ecdf(bartlett_chisq), col = 'red')
legend( 'bottomright’,

legend = c(”-2log Lambda”, "General approx.”,

"Bartlett”),
1ty = 1, col = c('black', 'blue', 'red'))
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Simulation v
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Sketch of a proof i

- Here is an outline of how you could get such an approximation:
- First, we can compute the moments of the likelihood ratio:
given h, we have

P(3(n—1p) Tp(3(n—1)+h)
T (3(n—1p+ph) T,(3(n-1)

- Next, we can use this expression to get an expression for the
characteristic function of pM = —2plog A=/

E (A2h/n> _ pph

eom(t) = E(exp(itpM)) = E ( A—%tp(n—l)/n) ‘
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Sketch of a proof i

- Therefore, if we take h = —itp(n — 1), we can see that the
characteristic function <ppM(t) is a product of gamma functions.

- The cumulant function, which is the logarithm of the
characteristic function, is therefore a sum of logarithms of
gamma functions.

- Why do we care? We can use Stirling’s approximation to
approximate the logarithm of gamma functions to any degree of
precision.

- This approximation of the cumulant function gives rise to an

approximation of the characteristic function. For order 2, we get:
@p]b[(t) ~ (1—27,f)_f/2—|—w1 <(1 — Qit)—(f+2)/2 o (1 _ QZIL)_f/Q) .
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Sketch of a proof iii

- Recall that the characteristic function of x2(d) is (1 — 2it)~%2.
Therefore, we can “invert” our approximation of gopM(t) to get
an approximation of the density and the distribution of pM.

- Moreover, we can choose p in such a way that wy = 0, which
gives a chi-square approximation that is more accurate than the

general asymptotic theory.
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- We built tests for structured covariance matrices using
likelihood ratio tests.

- We also built a test for equality of covariance, when we have
multiple samples.

- We briefly discussed asymptotic expansions and how they can
give rise to better approximations of the likelihood ratio test
statistics.
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