Tests for Multivariate Means
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Objectives

- Construct tests for a single multivariate mean

- Discuss and compare confidence regions and confidence
intervals

- Describe connection with Likelihood Ratio Test

- Construct tests for two multivariate means

- Present robust alternatives to these tests



Test for a multivariate mean: Y. known

- Let Yq,..., Y, ~ Ny(u, X) be independent.

- We saw in a previous lecture that
= 1
Y ~ N, (,u, Z) .
n
- This means that
n(Y — ) SN (Y — ) ~ x*(p)-

- In particular, if we want to test Hy : 1 = g at level v, then we

reject the null hypothesis if

n(Y — o) " S(Y — po) > X2 (D).



library(dslabs)
library(tidyverse)

dataset <- filter(gapminder, year == 2012,

lis.na(infant_mortality))

dataset <- dataset[,c(”infant_mortality”,
"life_expectancy”,
"fertility”)]

dataset <- as.matrix(dataset)



dim(dataset)

## [1] 178 3

# Assume we know Sigma
Sigma <- matrix(c(555, -170, 30, -170, 65, -10,
30, -10, 2), ncol = 3)

mu_hat <- colMeans(dataset)
mu_hat



## infant_mortality 1life_expectancy fertility
et 25.824157 71.308427 2.868933

# Test mu = mu_0

mu_0 <- c(25, 50, 3)

test_statistic <- nrow(dataset) * t(mu_hat - mu_0) %*%
solve(Sigma) %+*% (mu_hat - mu_0)

c(drop(test_statistic), qchisq(0.95, df = 3))

## [1] 7153.275387 7.814728



drop(test_statistic) > qchisq(0.95, df = 3)

## [1] TRUE



Test for a multivariate mean: X2 unknown i

- Of course, we rarely (if ever) know X3, and so we use its MLE
Y=->(Y;-Y)(Y;-Y)"

or the sample covariance S,,.
- Therefore, to test Hy : . = g at level o, then we reject the
null hypothesis if

T = n(Y — 1o)"S; (¥ — o) > c.

for a suitably chosen constant ¢ that depends on .

- Note: The test statistic 72 is known as Hotelling’s T2.



Test for a multivariate mean: X2 unknown ii

- We will show that (under Hy) T2 has a simple distribution:

(n—1)p

. (n—p)

F(p,n —p).

- In other words, we reject the null hypothesis at level « if

T > (Zl__lp)f)Fa(p,n —D).



Example (revisited) i

n <- nrow(dataset); p <- ncol(dataset)

# Test mu = mu_0O

mu_0 <- c(25, 50, 3)

test_statistic <- n * t(mu_hat - mu_0) %*%
solve(cov(dataset)) %*% (mu_hat - mu_0)

critical_val <- (n - 1)xp*qf(0.95, dfl1 = p,
df2 = n - p)/(n-p)



Example (revisited) ii

c(drop(test_statistic), critical_val)

## [1] 5121.461370 8.059773

drop(test_statistic) > critical_val

## [1] TRUE



Distribution of 72

We will prove a more general result that we will also be useful for
more than one multivariate mean.

Theorem

Let Y ~ N,(0,%), let mW ~ W,(m, %), and assume Y, W are
independent. Define

T2 = mYTWY.

Then N
m J—
7pT2 ~ F(pam_p+ 1)7
mp
where F'(«, ) denotes the non-central F-distribution with v, 3

degrees of freedom.



- First, if we write ¥ = LLT, we can replace Y by LY and W
with (L~H)TW (L) without changing T°2.
- In other words, without loss of generality, we can assume
X =1,
- Now, note that since Y and W are independent, the
conditional distribution of mW given Y is also W,,(m, I,,).
- Consider Y a fixed quantity, and let H be an orthogonal matrix
whose first column is Y(Y7Y) /2.
- The other columns can be chosen by finding a basis for the
orthogonal complement of Y and applying Gram-Schmidt to

obtain an orthonormal basis.



- Define V = HTW H. Conditional on Y, this is still distributed
1
as ~Wy(m, I,).
- This distribution does not depend on Y, and therefore V" and
Y are independent.

- Decompose V" as such:

vir Vio
)
Vor Vg

where vy is a (random) scalar.



- By result A.2.4g of MKB (see supplementary materials), the (1 1)
element of V1 is given by

Ufll|2 = (v11 — V12V Vo) ™

* Moreover, note that vyyj ~ X2(m —p+ 1).
- We now have

1
—T?* =YWy
m
= (H'Y)'(H"WH) Y (H"Y)
= (H'Y)"(V)"{(H"Y)
_ (YTY)l/ZUi1|2(YTY>1/2
= (YTY)/v11p2.



- In other words, we have expressed %TQ as a ratio of
independent chi-squares.

- Therefore, we have

m—p-+1

" T2 = ((YTY)/p) / (U11|2/(m —p+ 1))

~ F(p,m—p+1).



Confidence region for p i

- Analogously to the univariate setting, it may be more
informative to look at a confidence region:

- The set of values pp € RP that are supported by the data,
i.e. whose corresponding null hypothesis Hy : pt = g would
be rejected at level a.

- letc? = (&__z)pFa(p, n —p). A100(1 — )% confidence

region for p is given by the ellipsoid around Y such that

n(Y — ) TS HY —p) <, p€eRP



Confidence region for p ii

- We can describe the confidence region in terms of the
eigendecomposition of Sy,: let Ay > -+ > A, be its
eigenvalues, and let vy, . .., v, be corresponding eigenvectors
of unit length.

- The confidence region is the ellipsoid centered around Y with

axes
:tc\/)\:vi.



Visualizing confidence regions when p > 2 i

- When p > 2 we cannot easily plot the confidence regions.

- Therefore, we first need to project onto an axis or onto the
plane.

- Theorem: Let ¢ > 0 be a constant and A a p X p positive
definite matrix. For a given vector u # 0, the projection of the
ellipse {yT A=ty < 2} onto u is given by

VuT Au

c——.
ulu



Visualizing confidence regions when p > 2 ii

- If we take u to be the standard unit vectors, we get confidence

intervals for each component of u:

LB=Y, - H)Fa(pm —p)(s3;/n)
UB=Y;+ H&(nn — p)(s3;/n).
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n <- nrow(dataset); p <- ncol(dataset)

critical_val <- (n - 1)+p*qf(0.95, dfl = p,

df2 = n - p)/(n-p)
sample_cov <- diag(cov(dataset))

cbind(mu_hat - sqrt(critical_val=
sample_cov/n),
mu_hat + sqrt(critical_val=

sample_cov/n))

21



##t [,1] [,2]
## infant_mortality 20.801776 30.846538
## life_expectancy 69.561973 73.054881
## fertility 2.565608 3.172257
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Visualizing confidence regions when p > 2 (cont'd) i

- Theorem: Let ¢ > 0 be a constant and A a p X p positive
definite matrix. For a given pair of perpendicular unit vectors
uy, Uy, the projection of the ellipse {y? A=ty < ¢} onto the
plane defined by uy, usy is given by

{U"y)" U AU (UTy) < &,

where U = (uy, uy).

23



Example (cont’d) i

U <- matrix(c(1, 0, 0,
0, 1, 0),
ncol = 2)
R <- n*solve(t(U) %*% cov(dataset) %*% U)
transf <- chol(R)

24



Example (cont’d) ii

# First create a circle of radius c
theta_vect <- seq(0, 2+pi, length.out = 100)
circle <- sqrt(critical_val) * cbind(cos(theta_vect),
sin(theta_vect))
# Then turn into ellipse
ellipse <- circle %*% t(solve(transf)) +
matrix(mu_hat[1:2], ncol = 2,
nrow = nrow(circle),
byrow = TRUE)
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Example (cont’d) iii

# Eigendecomposition

# To visualize the principal axes

decomp <- eigen(t(U) %*% cov(dataset) %+*% U)

first <- sqrt(decomp$values[1]) =*
decomp$vectors[,1] * sqrt(critical_val)

second <- sqrt(decomp$values[2]) =

decomp$vectors[,2] * sqrt(critical_val)
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Example (cont'd) iv

74
I

_expectancy
72
L

life_ex

70
1

69

22 24 26 28 30

infant_mortality
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Simultaneous Confidence Statements |

- Letw € RP. We are interested in constructing confidence
intervals for wT,u that are simultaneously valid (i.e. right
coverage probability) for all w.

- Note that w’Y and wTSnw are both scalars.

- If we were only interested in a particular w, we could use the

following confidence interval:

(wTY + ta/gml\/wTSnw/n) )

28



Simultaneous Confidence Statements ii

- Or equivalently, the confidence interval contains the set of
values w7 for which
n(w'Y —w’p)? _ n(’ (¥ - p)?
wT S, w wT' S, w

t*(w) = < F,(1,n—1).

- Strategy: Maximise over all w:

T(Y — ;)2
max t*(w) = max n(ww(TSnwlu)) :

29



Simultaneous Confidence Statements iii

- Using the Cauchy-Schwarz Inequality:

(w'(Y = )? = (w'S,25,*(Y — p))?
((S,/*0)" (S 2(Y = w)))?

n

< (W' Syw)((Y — )" S, (Y — ).

n

- Dividing both sides by w’ S,,w/n, we get

t*(w) <n(Y = w)"'S, 1 (Y — p).

30



Simultaneous Confidence Statements iv

- Since the Cauchy-Schwarz inequality also implies that the
inequality is an equality if and only if w is proportional to
S—Y(Y — p), it means the upper bound is attained and

therefore
max t2(w) = n(Y — )T S 1Y — p).

- The right-hand side is Hotteling's T2, and therefore we know

that
(n—1p

2
max ¢ (w) ~

31



Simultaneous Confidence Statements v

- Theorem: Simultaneously for all w € RP?, the interval

(wTY + J MFa(p, n— p)wTSnw> .

n(n —p)

will contain w” 1 with probability 1 — av.
- Corollary: If we take w to be the standard basis vectors, we

recover the projection results from earlier.
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Further comments

- If we take w = (0,...,0,1,0,...,0,—1,0,...,0), we can
also derive confidence statements about mean differences
i — M-
- In general, simultaneous confidence statements are good for
exploratory analyses, i.e. when we test many different contrasts.
- However, this much generality comes at a cost: the resulting
confidence intervals are quite large.
- Since we typically only care about a finite number of
hypotheses, there are more efficient ways to account for the
exploratory nature of the tests.
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Bonferroni correction i

- Assume that we are interested in m null hypotheses
Hy; - wiTu = J4o;, at confidence level oy, fore =1, ..., m.

- We can show that

P(none of Hy; are rejected) = 1 — P(some Hy; is rejected)

> 11— P(Hy; is rejected)

i=1

=1- ZOZ,L'.
i=1

34



Bonferroni correction ii

- Therefore, if we want to control the overall error rate at o, we

can take
a; = a/m, foralli=1,...,m.

- If we take w; to be the 2-th standard basis vector, we get

simultaneous confidence intervals for all p components of w:

(?i + ta/zp,m(M)) -

35



# Let's focus on only two variables
dataset <- dataset[,c(”infant_mortality”,

"life_expectancy”)]

n <- nrow(dataset); p <- ncol(dataset)
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alpha <- 0.05
mu_hat <- colMeans(dataset)

sample_cov <- diag(cov(dataset))

# Simultaneous CIs
critical_val <- (n - 1)*p*qf(1-0.5*alpha, df1l = p,
df2 = n - p)/(n-p)

simul_ci <- cbind(mu_hat - sqrt(critical_val=
sample_cov/n),
mu_hat + sqrt(critical_val=

sample_cov/n))
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# Univariate without correction

univ_ci <- cbind(mu_hat - qt(1-0.5+alpha, n - 1) =
sqrt(sample_cov/n),
mu_hat + qt(1-0.5%alpha, n - 1) =*

sqrt(sample_cov/n))

# Bonferroni adjustment
bonf_ci <- cbind(mu_hat - qt(1-0.5*alpha/p, n - 1) =*
sqrt(sample_cov/n),
mu_hat + qt(1-0.5=alpha/p, n - 1) =
sqrt(sample_cov/n))
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simul_ci

H
## infant_mortality
## life_expectancy

univ_ci

H#it
## infant_mortality
## life_expectancy

bonf_ci

H#it
## infant_mortality
## life_expectancy

69

[,1]

.95439
.61504

[,1]

.33295
70.

09441

[,1]

.82491
.91775

30.
.00181

73

29

29
72

[,2]
69392

[,2]

.31537
72.

52244

[,2]

.8234
.6991
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N
N

Life Expectancy

I
]

T2-intervals + Bonferroni =+- Unadjusted

225 250 275 30.0
Infant mortality
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Summary of confidence statements

- So which one should you use?
- Use the confidence region when you're interested in a single
multivariate hypothesis test.
- Use the simultaneous (i.e. T2) intervals when testing a large
number of contrasts.
- Use the Bonferroni correction when testing a small number of
contrasts (e.g. each component of ).

- (Almost) never use the unadjusted intervals.
- We can check the coverage probabilities of each approach using
a simulation study:

- https://www.maxturgeon.ca/f19-
stat4690/simulation_coverage_probability.R

41


https://www.maxturgeon.ca/f19-stat4690/simulation_coverage_probability.R
https://www.maxturgeon.ca/f19-stat4690/simulation_coverage_probability.R

Likelihood Ratio Test i

- There is another important approach to performing hypothesis
testing:
- Likelihood Ratio Test
- General strategy:

i. Maximise likelihood under the null hypothesis: Ly
ii. Maximise likelihood over the whole parameter space: L
iii. Since the value of the parameters under the null hypothesis is
in the parameter space, we have L1 > L.
iv. Reject the null hypothesis if the ratio A = Lo/ Ly is small.

42



Likelihood Ratio Test ii

- In our setting, recall that the likelihood is given by

- 1 1 .
L(p, ) = Z:Hl ((2”)”’2’ €xp (—2(Yz‘ — ) X (yi - N))) :

- Over the whole parameter space, it is maximised at

- Under the null hypothesis Hy : pt = pug, the only free
parameter is X, and L(g, %) is maximised at
N 1 n
Yo = - > (Yi— o) (Yi — o)™
i=1

43



Likelihood Ratio Test iii

- With some linear algbera, you can check that

T emyeE
~ exp(—np/2
Lo, $0) = p(—np/2)

(27T)np/2’20‘n/2 ’

- Therefore, the likelihood ratio is given by

~ ~ n/2
A = L(MOJEO) _ |E|
- The equivalent statistic A%/ = |33| /|So] is called Wilks’
lambda.

Lh



Distribution of Wilk's Lambda i

- Let A be the Likelihood Ratio Test statistic, and let T? be

Hotelling's statistic. We have

) -1
AQ/":<1+ a ) .

n—1

- Therefore the two tests are equivalent.
- But note that A%/™ involves computing two determinants,

whereas T2 involves inverting a matrix.
Proof:

- write V =" (Y — Y)(Y; — Y)7, which allows us to
write 3 = n V.
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Distribution of Wilk's Lambda ii

- Using a familiar trick, we can write

n

nl = Z(YZ — po)(Y; — po)”

46



Distribution of Wilk's Lambda iii

- We can now write
2| _ VA (Y — po)(Y — o)
|nY| Vi
= I, + nV (Y — o) (Y — po)|
= (1+n(Y = 1) V(Y — po))

- (1 + %(Y — o) S (Y - uo)>

T2
=1
(7))

where the third equality follows from Problem 1 of Assignment 1.
O
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Comparing two multivariate

means

48



Equal covariance case i

- Now let’s assume we have two independent multivariate
samples of (potentially) different sizes:
Y1, Yin, ~ Ny(p1, 2)
“ Yor,..., Yon, ~ Ny(u2, %)
- We are interested in testing (; = po.
- Note that we assume equal covariance for the time being.
- Let Yl, Yg be their respective sample means, and let S7, S,
their respective sample covariances.
- First, note that

_ _ 1 1
V1=V~ Ny (1 - g (—+ —)5).

ny no

49



Equal covariance case ii

- Second, we also have that (n; — 1)S; is an estimator for
(n; — 1)%, fori = 1,2
« Therefore, we can pool both (n; — 1)S; and (ng2 — 1)Sz into a

single estimator for :

(n1 = 1)51 + (7’L2 = 1)S2
ny+ng — 2

S pool =

I

where (n1 + 12 — 2)Spoot ~ Wp(n1 +ng —2,%).
- Putting these two observations together, we get a test statistic

for Hy : pp = po:

T — (¥, - ¥o)" [(1 + 1) Spool}l (Y1 - V).

ni no
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Equal covariance case iii

- Using our theorem, we can that conclude that under the null
hypothesis, we get

(ny +mng —2)p

T% ~
(ny+mng—p—1)

F(p,n1+n2—p—1)
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datasetl <- filter(gapminder, year == 2012,
continent == "Africa”,
lis.na(infant_mortality))

datasetl <- datasetl[,c(”life_expectancy”,
"infant_mortality”)]

datasetl <- as.matrix(datasetl)
dim(datasetl)

## [1] 51 2
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dataset2 <- filter(gapminder, year == 2012,
continent == "Asia”,

lis.na(infant_mortality))
dataset2 <- dataset2[,c(”life_expectancy”,
"infant_mortality”)]

dataset2 <- as.matrix(dataset2)
dim(dataset2)

## [1] 45 2
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nl <- nrow(datasetl); n2 <- nrow(dataset2)

p <- ncol(datasetl)
(mu_hatl <- colMeans(datasetl))

## Tlife_expectancy infant_mortality
Het 62.14314 52.32745

(mu_hat2 <- colMeans(dataset2))
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IIEHHHingIHIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

## Tlife_expectancy infant_mortality
Het 73.76667 20.84000

(S1 <- cov(datasetl))

#it life_expectancy infant_mortality
## life_expectancy 48.7241 -107.1926
## infant_mortality -107.1926 504.2972

(S2 <- cov(dataset2))
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IIEHHHHHHiIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

#it life_expectancy infant_mortality
## life_expectancy 26.08727 -65.19568
## infant_mortality -65.19568 256.40655

# Even though it doesn't look reasonable

# We will assume equal covariance for now
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IIEHHHingIHiIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

mu_hat_diff <- mu_hatl - mu_hat2
S_pool <- ((n1 - 1)*S1 + (n2 - 1)*S2)/(n1+n2-2)

test_statistic <- t(mu_hat _diff) %*%
solve((n1”-1 + n2”-1)*S_pool) %*% mu_hat_diff

const <- (n1 + n2 - 2)*p/(nl + n2 - p - 2)

critical_val <- const = qf(0.95, dfl1 = p,
df2 =nl +n2 - p - 2)
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IIEHHHHHHiIHiIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

c(drop(test_statistic), critical_val)

## [1] 87.65479 6.32545

drop(test_statistic) > critical_val

## [1] TRUE
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Unequal covariance case i

- Now let’s turn our attention to the case where the covariance
matrices are not equal:
“ Y11, Yin, ~ Np(p1, 1)
“ You,. ., Yon, ~ Np(u2, X2)
- Recall that in the univariate case, the test statistic that is
typically used is called Welch’s t-statistic.
- The general idea is to adjust the degrees of freedom of the
t-distribution.
- Note: This is actually the default test used by t.test!
- Unfortunately, there is no single best approximation in the

multivariate case.
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Unequal covariance case ii

- First, observe that we have
_ _ 1 1
Y — Yo~ Ny (1 — pro, —251+ —2o ).
Al %)
- Therefore, under Hy : p1y = pio, we have

_ _ 1 1 -1 _
(B -0 (54 %) (- F) ~ X0p)
ny no
- Since S; converges to YJ; as n; — 00, we can use Slutsky’s
theorem to argue that if both ny — p and ny — p are “large”,
then
2 3 ot (1 1 S Y, 2
T =Y1-Yo)" (—=Si+—5) (Y1-Y2) = ().
1 2
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Unequal covariance case iii

- Unfortunately, the definition of “large” in this case depends on
how different 221 and X are.
- Alternatives:
- Use one of the many approximations to the null distribution of
T? (e.g. see Timm (2002), Section 3.9; Rencher (1998), Section
3.9.2).
- Use a resampling technique (e.g. bootstrap or permutation test).
- Use Welch’s t-statistic for each component of j11 — po with a

Bonferroni correction for the significance level.
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Nel & van der Merwe Approximation

- First, define
1 1 1 =1
W, = =8 <51 + 52) .
n; ny Mo

- Then let
p+p
it g (tr(W3) + te(W)2)

- One can show that min(ny,ns) < v < ny + na.

V=

- Under the null hypothesis, we approximately have

vp
T~ —2  _Fpv—p+1).
V_p+1(nv p+1)

63



Example (cont’d) i

test_statistic <- t(mu_hat diff) %*%
solve(n1™-1+S1 + n2"-1%S2) %*% mu_hat_diff

critical_val <- qchisq(0.95, df = p)

c(drop(test_statistic), critical_val)

## [1] 90.884961 5.991465

drop(test_statistic) > critical_val
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Example (cont’d) ii

## [1] TRUE

W1l <- S1 %*% solve(nl™-1+%S1 + n2"-1+S2)/n1
W2 <- S2 %*% solve(nl™-1*S1 + n2"-1%S2)/n2

trace_square <- sum(diag(Wi1%=%W1))/n1 +
sum(diag(W2%*%W2))/n2
square_trace <- sum(diag(wi))”2/n1 +

sum(diag(w2))"2/n2

(nu <- (p + p”™2)/(trace_square + square_trace))
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Example (cont’d) iii

## [1] 88.85241
const <- nu*p/(nu - p - 1)

critical_val <- const * qf(0.95, df1 = p,
df2 = nu - p - 1)

c(drop(test_statistic), critical_val)

## [1] 90.884961 6.422322

drop(test_statistic) > critical_val

## [1] TRUE
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- To perform the tests on means, we made two main assumptions
(listed in order of importance):
1. Independence of the observations;
2. Normality of the observations.
- Independence is the most important assumption:
- Departure from independence can introduce significant bias
and will impact the coverage probability.
Normality is not as important:
- Both tests for one or two means are relatively robust to heavy

tail distributions.
- Test for one mean can be sensitive to skewed distributions; test

for two means is more robust.
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IIEiHHHIHHiHiIiIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

library(mvtnorm)
set.seed(7200)

n <- 50; p <- 10
B <- 1000

# Simulate under the null
mu <- mu_0 <- rep(0, p)
# Cov: diag = 1; off-diag = 0.5

p, nrow

p)

Sigma <- matrix(0.5, ncol
diag(Sigma) <- 1
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IIEiHHHIHHiiHIIiIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

critical_val <- (n - 1)=*p*qf(0.95, df1l = p,
df2 = n - p)/(n-p)

null_dist <- replicate(B, {
Y_norm <- rmvnorm(n, mean = mu, sigma = Sigma)
mu_hat <- colMeans(Y_norm)
# Test mu = mu_0O
test_statistic <- n * t(mu_hat - mu_0) %*%
solve(cov(Y_norm)) %*% (mu_hat - mu_0)

b
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IIEiHiHIHHHHHIiIiIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

# Type I error

mean(null_dist > critical_val)

## [1] 0.035

Ul



Simulation iv

Black is smoothed density; Blue is theoretical density

L%

Density

Simulated data
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‘IIiiHIHHHHHHIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

# Now the t distribution
nu <- 3

null_dist_t <- replicate(B, {
Y_t <- rmvt(n, sigma = Sigma, df = nu, delta = mu)
mu_hat <- colMeans(Y_t)
# Test mu = mu_0O
test_statistic <- n * t(mu_hat - mu_0) %*%
solve(cov(Y_t)) %*% (mu_hat - mu_0)
)
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‘IIiiHHIHHEHIIiiIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

# Type I error

mean(null_dist_t > critical_val)

## [1] 0.032
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Simulation vii

Black is smoothed density; Blue is theoretical density

AK
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Simulated data
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IIEiHiHIHHHHHIIHIiIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

# Now a contaminated normal
sigma <- 3; epsilon <- 0.25
null_dist_cont <- replicate(B, {
Z <- rmvnorm(n, sigma = diag(p))
Y <- sample(c(sigma, 1), size = n, replace = TRUE,
prob = c(epsilon, 1 - epsilon))=*Z
mu_hat <- colMeans(Y)
# Test mu = mu_0O
test_statistic <- n * t(mu_hat - mu_0) %*%
solve(cov(Y)) %*% (mu_hat - mu_0)
)
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# Type I error

mean(null_dist_cont > critical_val)

## [1] 0.025
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Simulation x

Black is smoothed density; Blue is theoretical density
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Simulation xi
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Robust 772 test statistic

- One potential solution:

- Fix the distribution, and derive an approximation of the null
distribution.

- However, you could potentially get a different approximation for
each distribution, and it is not clear which one to use for a
given dataset.

- A different solution:

- Replace the sample mean and sample covariance with robust
estimates and derive an approximation under general
assumptions.

- Generally valid for a large class of distributions, but it will
typically at a cost of lower efficiency (i.e. lower power).
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Minimum Covariance Determinant Estimator i

- This is a robust estimator of the mean and the covariance
introduced by Rousseeuw (JASA, 1984).

- Robustness can mean many things; in this setting, it means that

the estimators are stable in the presence of outliers.

- Itis defined as follows:
- Let h be an integer between n (i.e. the sample size) and
|(n 4+ p+1)/2] (where p is the number of variables).
- Let YMCD be the mean of the A observations for which the
determinant of the sample covariance matrix is minimised.
- Let Sprop be the corresponding sample covariance scaled by a

constant C.
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Minimum Covariance Determinant Estimator ii

- It can be shown that the smaller h, the more robust
(Yrep, Smeb).
- However, there is cost in efficiency. This is can be
counterbalanced by reweighting the estimators:
- Let d? = (Yi — Y]WCD)TS];;CD(YZ' = ?MCD) be the
Mahalanobis distances under the original MCD estimate.
- Define a weighting function W (d?) = I(d? < x2.¢75(p)).
- Compute the reweighted MCD estimates:

3 i W(d)Y;
Y, = 1=1 i
TUTL W@ )
it W(d3)(Yi = Yr)(Yi — Yr)"

S = C = n
f LW (D)
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Minimum Covariance Determinant Estimator iii

- This reweighted estimator (Y g, Sg) has the same robustness
properties as (YMCD, SMCD), but with higher efficiency.

- This makes sense, as we are generally including more data

points when reweighting, but still controlling for outliers.
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# Recall our dataset
dataset <- filter(gapminder, year == 2012,
lis.na(infant_mortality))

dataset <- dataset[,c(”infant_mortality”,

"life_expectancy”)]
dataset <- as.matrix(dataset)

# The sample estimators
colMeans(dataset)
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## infant_mortality 1life_expectancy

Het 25.82416 71.30843

cov(dataset)

#it infant_mortality life_expectancy
## infant_mortality 557.0787 -168.81173

## life_expectancy -168.8117 67.36145
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#t The MCD estimators

library(rrcov)

mcd <- CovMcd(dataset)
getCenter(mcd)

## infant_mortality 1life_expectancy
Hit 11.42203 75.90424

getCov(mcd)
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#it infant_mortality life_expectancy
## infant_mortality 132.91885 -60.71957
## life_expectancy -60.71957 45.54039
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Robust T2 test statistic i

- To get a robust T? statistic, we can simply replace the sample
estimates by the (reweighted) MCD estimates:

T2 op =n(Y; — YR)TSZHY; — Ypg).

- Unfortunately, the finite-sample properties of (YR, SR) are
unknown. BUT:

- There exists a constant s such that YR ~ Np (,u, %E)

- There exist constants ¢, m such that me™1Sg &~ W,(m, X)
and E(Sg) = cX.

- Yp and Sg are independent.
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Robust T2 test statistic ii

- Putting all of these together, we can deduce that

mp

Threp = ke~ F(p,m—p+1).

m—p+1

- The constants k, m, ¢ can be estimated (Hardin & Rocke, 2005).
- Alternatively, the null distribution of 7%, can be estimated
using resampling techniques (Willems et al, 2002).
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Robust 772 test statistic iii

Algorithm (Willems et al, 2002)
1. Rewrite the approximation with only two parameters:
T2 op = dF(p, q).
2. Compute the theoretical mean and variance of dF'(p, q) as a
function of d, g, p.

3. For several values of n, p, generate multivariate normal variates
N, (0, I,) and compute T2 p-

4. Compute the sample mean and variance of T, and use the
method of moments to estimate d, q.
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Example (cont’d) i

n <- nrow(dataset); p <- ncol(dataset)

# Classical T2

mu_0 <- c(25, 70)

test_statistic <- n * t(mu_hat - mu_0) %*%
solve(cov(dataset)) %*% (mu_hat - mu_0)

critical_val <- (n - 1)xp*qf(0.95, dfl1 = p,
df2 = n - p)/(n-p)
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Example (cont’d) ii

c(drop(test_statistic), critical_val)

## [1] 26.883440 6.129242

drop(test_statistic) > critical_val

## [1] TRUE

# Robust T2
t2_robust <- T2.test(dataset, mu = mu_0, method = "mcd”)
t2_robust
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Example (cont’d) iii

H#it

## One-sample Hotelling test (Reweighted MCD Location)
Hit

## data: dataset

## T2 = 42.678, F = 18.000, dfl = 2, df2 = 178, p-value =
## alternative hypothesis: true mean vector is not equal
Het

## sample estimates:

Hit infant_mortality life_expectancy

## MCD x-vector 16.97192 73.82329
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Example (cont'd) iv

t2_robust$p.value

##t [1] 7.597764e-08
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- We looked at Hotelling’s 7" statistic for tests of one or two
multivariate means.

- We described the link between 7 and the LRT test statistic.

- We discussed confidence regions, simultaneous confidence
intervals, and Bonferroni correction.

- We looked at a robust version of T2 and how to estimate its
null distribution.
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