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= Understand the distribution of covariance matrices

= Understand the distribution of the MLEs for the
multivariate normal distribution

= Understand the distribution of functionals of covariance
matrices

= Visualize covariance matrices and their distribution



Before we begin... i

= In this section, we will discuss random matrices
= Therefore, we will talk about distributions, derivatives
and integrals over sets of matrices
= |t can be useful to identify the space M,, ,(R) of n x p
matrices with R"7.
= We can define the function vec : M, ,(R) — R™ that
takes a matrix M and maps it to the np-dimensional

vector given by concatenating the columns of M into a
single vector.

2 4

1 3
Vec< ) =(1,2,3,4).



Before we begin... ii

= Another important observation: structural constraints
(e.g. symmetry, positive definiteness) reduce the number
of “free” entries in a matrix and therefore the dimension
of the subspace.
= E.g. If Aisasymmetric p x p matrix, there are only
$p(p + 1) independent entries: the entries on the
diagonal, and the off-diagonal entries above the diagonal
(or below).



Wishart distribution i

» Let S be a random, positive semidefinite matrix of
dimension p X p.
= We say S follows a standard Wishart distribution W, (m)
if we can write

m
S=> Z,Z], Z;~ Ny(0,1,) indep..
i=1

= We say S follows a Wishart distribution W),(m,X) with
scale matrix X if we can write

S=>"Y, Y], Y;~ Ny0,%) indep..
=1



Wishart distribution ii

= We say S follows a non-central Wishart distribution
W, (m, 3; A) with scale matrix £ and non-centrality
parameter A if we can write

m m
S=>"Y. Y], Yi~ Ny(u;, %) indep., A= pp].
i=1 =1



= Let S ~ W,(m) be Wishart distributed, with scale matrix
¥=1,

= We can therefore write S = 37, Z,Z7, with
Z; ~ N,(0,1,).



» Using the properties of the trace, we have

tr (S) = tr (i ZZ-ZZ»T>
=1
B m . T
= ;tr (z:Z])
— > (212;)
=1

=>"7!Z,.
=1

» Recall that Z]Z; ~ x*(p).



= Therefore tr (.S) is the sum of m independent copies of a
X%(p), and so we have

tr (S) ~ X2(mp),

B <- 1000
n <- 10; p <- 4

traces <- replicate(B, {
Z <- matrix(rnorm(n*p), ncol = p)
W <- crossprod(Z)
sum(diag(W))

D



hist(traces, 50, freq = FALSE)
lines(density(rchisq(B, df = n*p)))
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Histogram of traces
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Non-singular Wishart distribution i

= As defined above, there is no guarantee that a Wishart
variate is invertible.

» To show: if S ~ W,(m,X) with ¥ positive definite, S is
invertible almost surely whenever m > p.

Lemma: Let Z be an n X n random matrix where the entries
Z;; are iid N(0,1). Then P(det Z = 0) = 0.

Proof: We will prove this by induction on n. If n =1, then
the result hold since N(0, 1) is absolutely continuous.

Now let n > 1 and assume the result holds for n — 1. Write
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Non-singular Wishart distribution ii

AL
7 - % “z)
Zn Zx
where Zsy is (n — 1) x (n — 1). Note that by assumption, we

have det Zys # 0 almost surely. Now, by the Schur
determinant formula, we have

det Z = det Z22 det (le — Z12Z£21Z21)
= (det ZQQ) (ZH — 212Z2_21221) o
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Non-singular Wishart distribution iii

We now have

P(|Z| =0) = P(|Z| = 0,|Zy| # 0) + P(|Z] = 0,[Z2| = 0)
P(|Z] = 0,|Z| # 0)

P(Zv = Z12Z33' Zon, | Zaa| # 0)

E (P(Z1 = Z1273, Zon1, | Zoa| # O | Z12, Zoa, Z1))
E

0,

(0)
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Non-singular Wishart distribution iv

where we used the laws of total probability (Line 1) and total
expectation (Line 4). Therefore, the result follows from
induction. [

We are now ready to prove the main result: let S ~ WW,(m,X)
with det ¥ # 0, and write S = >, Y, Y7, with

Y, ~ N,(0,%). If we let Y be the m x p matrix whose i-th
row is Y;. Then

S=>Y, Y =Y"Y.

=1
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Non-singular Wishart distribution v

Now note that

rank(S) = rank(Y”Y) = rank(Y).

Furthermore, if we write ¥ = LL" using the Cholesky
decomposition, then we can write

Z=Y(L Y,

where the rows Z; of Z are N,(0, ,) and rank(Z) = rank(Y).

Finally, we have
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Non-singular Wishart distribution vi

rank(S) = rank(Z)
> rank(Zy, ..., 7Z,)
=p (as.),

where the last equality follows from our Lemma. Since
rank(S) = p almost surely, it is invertible almost surely. n
Definition

If S ~ W,(m,X) with X positive definite and m > p, we say
that S follows a nonsingular Wishart distribution. Otherwise,
we say it follows a singular Wishart distribution.
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Additional properties i

Let S ~ W,(m,X).

= We have E(S) = mX.
» If Bis a ¢ X p matrix, we have

BSB' ~ W,(m, BLB").
» T ~ Wy(n,X), then

S+ T ~Wy(m+n,X).

18



Additional properties ii

Now assume we can partition S and > as such:
g — St S C n= Y Yo 7
521 SQQ E21 Z]22
with .S;; and X; of dimension p; X p;. We then have

= Sii ~ Wy, (m, Xy)

i

» If 15 =0, then Sq; and Sy, are independent.
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Characteristic function i

= The definition of characteristic function can be extended
to random matrices:

= Let S be a p X p random matrix. The characteristic
function of S evaluated at a p x p symmetric matrix T’
is defined as

25(T) = E (exp(itx(T5))) .
= We will show that if S ~ W,(m,X), then
os(T) = |1, — 25T~
= First, we will use the Cholesky decomposition ¥ = LL™.
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Characteristic function ii

= Next, we can write

= i, (Z zjij) LT,
j=1

where Z; ~ N, (0, I,,).
= Now, fix a symmetric matrix 7. The matrix LTTL is also
symmetric, and therefore we can compute its spectral
decomposition:
LTTL = UAUT,

where A = diag(\y, ..., ),) is diagonal and UUT = I,,.
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Characteristic function iii

= \We can now write

22



Characteristic function iv

tr(TS) = tr

=tr

=tr

=tr

NG (z zjz]r) U)
j=1

A (i(UTzn(Usz)T

j=1

))
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Characteristic function v

= Two key observations:

» UTZj ~ Ny(0, I);

o tr (AZ;ZT) = Y0, M2,
= Putting all this together, we get

E (exp(itr(TS))) = FE (exp (i i zp: Ak%%;))
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Characteristic function vi

= But Z3, ~ x*(1), and so we have
m P
T) =11 II 21y (k)
j=1k=1

= Recall that ¢,2(1)(t) = (1 — 2it)"/2, and therefore we
have

m P
=TT 1@ —2in) 2

j=1k=1
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Characteristic function vii

= Since [T7_, (1 — 2i\,) Y2 = |1, — 2iA|~Y/2, we then have

0s(T) = [1IL, — 2iA| 72

j=1

= |1, — 2iA|”™/?

= |I, — 2iUAUT|~™/2
= |I, — 20LTTL|~™?
= |I, — 2i%T|~™/?
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Density of Wishart distribution

= Let S ~ W,(m,X) with X positive definite and m > p.
The density of S is given by

1 1
_ Tt 2—1 ) (m—p—1)/2
f(S) 2T, () [S exp< 5 r(27°9)) |S| ,

where

p—1 : 1
Ip(u) = P VAT T (u — Z) , u>—-(p—1).
i=0 2 2
» Proof: Compute the characteristic function using the
expression for the density and check that we obtain the

same result as before (Exercise).
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Sampling distribution of sample covariance

= We are now ready to prove the results we stated a few
lectures ago.
= Recall again the univariate case:
e ~ X2 —1);

= X and s? are independent.
= In the multivariate case, we want to prove:
= (n—1)S, ~Wy(n—1,%),
= Y and S, are independent.
= We will show that using the multivariate Cochran
theorem

28



Cochran theorem

Let Yy,...,Y, be a random sample with Y; ~ N,(0,%), and
write Y for the n x p matrix whose i-th row is Y;. Let A, B
be n x m symmetric matrices, and let C' be a ¢ x n matrix of
rank g. Then

1. YPAY ~ W,(m,X) if and only if A2 = A and trA = m.
2. YIAY and YT BY are independent if and only if AB = 0.
3. YYAY and CY are independent if and only if CA = 0.
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Application i

s let C = %1T, where 1 is the n-dimensional vector of

ones.
= Let A=1,— 2117
= Then we have

YTAY = (n —1)S,, CY = Y7.

= We need to check the conditions of Cochran's theorem:

n A2 = A
= CA=0;
= trA=n-—1.
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Application ii

» Using Parts 1. and 3. of the theorem, we can conclude
that
= (n—1)S, ~Wy(n—1,%);
= Y and S, are independent.
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Proof (Cochran theorem) i

Note 1: We typically only use one direction (<).

Note 2: We will only prove the first part.

= Since A is symmetric, we can compute its spectral
decomposition as usual:

A=UANUT.

= By assuming A? = A, we are forcing the same condition

on the eigenvalues:
A% =A.

= But only two real numbers are possible \; € {0,1}.

32



Proof (Cochran theorem) ii

= Given that trA = m, and after perhaps reordering the
eigenvalues, we have

M= = A =1, == N = 0

» Now, set Z = U"Y, and let Z, be the i-th row of Z. We
have
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Proof (Cochran theorem) iii

= Therefore, the covariance structures of Y and Z are the
same:

= The vectors Z1,...,7Z, are still independent.
= Z; ~ Np(0,%).

= We can now write
YTAY = Y'UAUTY
—7Z'A\Z
=> Z,Z].
i=1

= Therefore, we conlude that YT AY ~ W, (m, X). O
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Bartlett decomposition i

» Recall that the Wishart distribution is a distribution on
the set of positive semi-definite matrices.
= This implies symmetry and a non-negative eigenvalues.
» These constraints are natural for covariance matrices, but
it forces dependence between the entries that can make
computations difficult.
= The Bartlett decomposition is a reparametrization of
the Wishart distribution in terms of p(p + 1)/2
independent entries.
= You can think of it as a stochastic version of the

Cholesky decomposition.
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Bartlett decomposition ii

» Let S ~ W,(m,X), where m > p and X is positive
definite, and write S = LL” using the Cholesky
decomposition. Then the density of L is given by

o» P 1
f(L)=—= H 7" exp <—tr(2_1LLT)> ,
K P 2

where K = 2mP/2|%|T,(m/2) and ¢;; is the (i, j)-th entry
of L.
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= This result will follow from the formula for the density
after a transformation.
» Recall that the density of S is:

_ (e (m—p-1)/2
f(S)—KeXp< tr(S S)) 1] |

= Note that we have

tr(X71S) = tr(X'LLY),

P
S| = [LLY| = |L|* = T] £
i=1
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» Putting all this together, we have

et = ieXp (—;tr(215)> |§|(m=p=1)/2

K
_ ! exp (—1tr(Z_ILLT)> ﬁﬁm_p_l.
K 2 -

= To get the density of L, we need to multiply by the
Jacobian of the inverse transformation L — LL”.
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= A simple yet tedious computation (see for example
Theorem 2.1.9 in Muirhead) gives:

|J‘_2pH£ l+1

= Finally, we get the expression we wanted:

D TTP p—i+1
2 Hi:l g’L’L

FL) = =L

1 p
exp (—Qtr(ElLLT)> IT e
i=1
2P 1
= Eexp <—2tr YLLT) > H€

39



Corollary i

If X = I, the elements ¢;; are all independent, and they follow
the following distributions:

E?l. ~ XZ(m — i+ 1)7
Proof:
= When ¥ = [, the expression for tr(X'LLT) simplifies:
tr(STLLT) = tr(LLT) =) 42,

1>]

40



Corollary ii

= This allows us to rewrite the density f(L) (up to a
constant):

f(L) o exp (—1‘51" LL") > H€

= exp (—Zé ) HEZH

i>j i=1

~ (T (-38) H{TTow (368 ).
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Corollary iii

which is the product of the marginals we wanted. ]
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B <- 1000
n <- 10
p <5

bartlett <- replicate(B, {
X <- matrix(rnorm(n*p), ncol = p)
L <- chol(crossprod(X))

b

dim(bartlett)
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## [1] 5 5 1000
library(tidyverse)

# Extract and plot diagonal 2

diagonal <- purrr::map_df(seq_len(B), function(i) {
tmp <- diag(bartlett[,,i])"2
data.frame(matrix(tmp, nrow = 1))

i9)
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# Put into long format
diag_plot <- gather(diagonal, Entry, Value)

# Add chi-square means

diag means <- data.frame(
Entry = paste0("X", seq_len(p)),
mean = n - seq_len(p) + 1

45



ggplot (diag plot, aes(Value, fill = Entry)) +
geom_density(alpha = 0.2) +
theme_minimal() +
geom_vline(data = diag means,
aes(xintercept = mean,
colour = Entry),

linetype = 'dashed')
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# Extract and plot off-diagonal
off _diagonal <- purrr::map_df(seq_len(B), function(i)
tmp <- bartlettl[,,i] [upper.tri(bartlett[,,i])]

data.frame(matrix(tmp, nrow = 1))

D
dim(off_diagonal)

## [1] 1000 10
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# Put into long format
offdiag_plot <- gather(off_diagonal, Entry, Value)

ggplot (offdiag plot, aes(Value, group = Entry)) +
geom_density(fill = NA) +

theme_minimal ()

49
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Distribution of the Generalized Variance i

= As an application of the Bartlett decomposition, we will
look at the distribution of the generalized variance:

GV(S) =S|, S~ W,(m,I).

= Theorem: If S ~ W,(m,X) with m > p and X positive
definite, then the ratio

GV(S)/GV (%) = |S|/IX]

follows the same distribution as a product of chi-square

distributions: )

[1x*(m—i+1).
i=1
51



Distribution of the Generalized Variance ii

Proof:

= First, we have

o= ISl = [ S5 = s m e,
= Moreover, we have that X~1/28%~1/2 ~ W, (m, 1), so

we can use the result of the Corollary above.
= If we write -1/25%"Y2 = LL" using the Bartlett

decomposition, we have

151

LLY| =L =T]¢.
Iy = 1L =1 H
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Distribution of the Generalized Variance iii

= Qur result follows from the characterisation of the
distribution of /. O
= Note: The distribution of GV(S)/GV (X) does not
depend on X.
= |t is a pivotal quantity.
= Note 2: If S, is the sample covariance, then
(n—1)S, ~ Wy(n —1,%) and therefore

=17 G ~ 10 - )

=l
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= We will use the Ramus dataset (see slides on Multivariate
normal).

» We will construct a 95% confidence interval for the
population generalized variance.

= Under a multivariate normality assumption, which
probably doesn't hold...
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var_names <- c("Age8", "Age8.5",
"Age9", "Age9.5")

dataset <- ramus[,var names]
dim(dataset)

## [1] 20 4
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# Sample covariance
Sn <- cov(dataset)

# Generalized wvariance
det (Sn)

## [1] 1.068328
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# Simulate quantiles
set.seed(7200)

n <- nrow(dataset)

p <- ncol(dataset)

B <- 1000

simulated _vals <- replicate(B, {

prod(rchisq(p, df = n - seq_len(p)))/((n-1)"p)
D
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bounds <- quantile(simulated vals,
probs = ¢(0.025, 0.975))

bounds

#it 2.5% 97.5Y%
## 0.1409302 2.0241338
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# 95/, Confidence interval (reverse bounds)
det (Sn)/rev(bounds)

## 97.5% 2.5%
## 0.527795 7.580545
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Visualization i

= Visualizing covariance/correlation matrices can be
difficult, especially when the number of variables p
increases.

= One possibility is a heatmap, that assign a colour to
the individual coariances/correlations.

» Visualizing distributions of random matrices is even
harder

= Already when p = 2, this is a 3-dimensional object...
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Visualization ii

= One possibility is to decompose the distribution of a
random matrix (or a sample thereof) into a series of
univariate and bivariate graphical summaries. For
example:

= Histograms of the covariances/correlations;
= Scatter plots for pairs of covariances;
= Histograms of traces and determinants.
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# Recall our covariance matrixz for the Ramus dataset
round(Sn, 2)

#i# Age8 Age8.5 Age9 Age9.5
## Age8 6.33 6.19 5.78 5.55
## Age8.5 6.19 6.45 6.15 5.92
## Age9 5.78 6.156.92 6.95
## Age9.5 5.656 5.92 6.95 7.46
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# Visually we get
lattice::levelplot(Sn, xlab = "", ylab = "")
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Example
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# Perhaps eastier to tinterpret as correlations
# But be careful with the scale!
lattice: :levelplot(cov2cor(Sn),

xlab = "", ylab = "")
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Next, we will visualize the distribution of .S,, using bootstrap.

B <- 1000
n <- nrow(dataset)

boot_covs <- lapply(seq_len(B), function(b) {
data_boot <- dataset[sample(n, n, replace = TRUE),]
return(cov(data_boot))

D
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# Extract the diagonal entries

diagonal <- purrr::map_df (boot_covs, function(Sn) {
tmp <- diag(Sn)
data.frame(matrix(tmp, nrow = 1))

b
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# Put into long format
diag_plot <- gather(diagonal, Entry, Value)

ggplot (diag plot, aes(Value, fill = Entry)) +

geom_density(alpha = 0.2) +

theme_minimal ()
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density

Value

10

Entry
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# Multivariate normal theory predicts
# the diagonal entry should be scaled chi-square
ggplot(diag plot, aes(sample = Value)) +
geom_qq(distribution = qchisq,
dparams = list(df = n - 1)) +
theme_minimal() + facet_wrap(~ Entry) +
geom_qgq_line(distribution = qchisq,
dparams = list(df = n - 1))
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Example

X3 xa

sample

10 20 30 40 10 20 30 20
theoretical
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# Finally, let's look at patrwise scatterplots

# for off-diagonal entries

off diag <- purrr::map_df (boot_covs, function(Sn) {
tmp <- Sn[upper.tri(Sn)]
data.frame(matrix(tmp, nrow = 1))

b
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# Add column names

names (off_diag) <- c(pasteO0("8:",c("8.5","9","9.5")),
paste0("8.5:",c("9","9.5")),
"9:9.5")

GGally: :ggpairs(off_diag)
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8:9 8:9.5 8.5:9
Corr Corr Corr
0.951 0.922 0.916

A
o

8595

Corr

0.892
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S658 658 5658 68 g8

S66
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» Wishart random matrices are sums of outer products
of independent multivariate normal variables with the
same scale matrix 3.

= They allow us to give a description of the sample
covariance matrices and its functionals:

= E.g. trace, generalized variance, etc.

= The Bartlett decomposition gives us a
reparametrization of the Wishart distribution with
independent constaints of the entries.

= Positive diagonal entries; contant zero above the
diagonal; unconstrained below the diagonal.
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