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Objectives

• Understand the distribution of covariance matrices
• Understand the distribution of the MLEs for the

multivariate normal distribution
• Understand the distribution of functionals of covariance

matrices
• Visualize covariance matrices and their distribution

2



Before we begin… i

• In this section, we will discuss random matrices
• Therefore, we will talk about distributions, derivatives

and integrals over sets of matrices
• It can be useful to identify the space Mn,p(R) of n × p

matrices with Rnp.
• We can define the function vec : Mn,p(R) → Rnp that

takes a matrix M and maps it to the np-dimensional
vector given by concatenating the columns of M into a
single vector.

vec
(

1 3
2 4

)
= (1, 2, 3, 4).
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Before we begin… ii

• Another important observation: structural constraints
(e.g. symmetry, positive definiteness) reduce the number
of “free” entries in a matrix and therefore the dimension
of the subspace.

• E.g. If A is a symmetric p × p matrix, there are only
1
2p(p + 1) independent entries: the entries on the
diagonal, and the off-diagonal entries above the diagonal
(or below).
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Wishart distribution i

• Let S be a random, positive semidefinite matrix of
dimension p × p.

• We say S follows a standard Wishart distribution Wp(m)
if we can write

S =
m∑

i=1
ZiZT

i , Zi ∼ Np(0, Ip) indep..

• We say S follows a Wishart distribution Wp(m, Σ) with
scale matrix Σ if we can write

S =
m∑

i=1
YiYT

i , Yi ∼ Np(0, Σ) indep..
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Wishart distribution ii

• We say S follows a non-central Wishart distribution
Wp(m, Σ; ∆) with scale matrix Σ and non-centrality
parameter ∆ if we can write

S =
m∑

i=1
YiYT

i , Yi ∼ Np(µi, Σ) indep., ∆ =
m∑

i=1
µiµ

T
i .
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Example i

• Let S ∼ Wp(m) be Wishart distributed, with scale matrix
Σ = Ip.

• We can therefore write S = ∑m
i=1 ZiZT

i , with
Zi ∼ Np(0, Ip).
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Example ii

• Using the properties of the trace, we have

tr (S) = tr
(

m∑
i=1

ZiZT
i

)

=
m∑

i=1
tr
(
ZiZT

i

)
=

m∑
i=1

tr
(
ZT

i Zi

)
=

m∑
i=1

ZT
i Zi.

• Recall that ZT
i Zi ∼ χ2(p).
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Example iii
• Therefore tr (S) is the sum of m independent copies of a

χ2(p), and so we have

tr (S) ∼ χ2(mp).

B <- 1000
n <- 10; p <- 4

traces <- replicate(B, {
Z <- matrix(rnorm(n*p), ncol = p)
W <- crossprod(Z)
sum(diag(W))

})
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Example iv

hist(traces, 50, freq = FALSE)
lines(density(rchisq(B, df = n*p)))
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Example v

Histogram of traces
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Non-singular Wishart distribution i

• As defined above, there is no guarantee that a Wishart
variate is invertible.

• To show: if S ∼ Wp(m, Σ) with Σ positive definite, S is
invertible almost surely whenever m ≥ p.

Lemma: Let Z be an n × n random matrix where the entries
Zij are iid N(0, 1). Then P (det Z = 0) = 0.

Proof: We will prove this by induction on n. If n = 1, then
the result hold since N(0, 1) is absolutely continuous.

Now let n > 1 and assume the result holds for n − 1. Write
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Non-singular Wishart distribution ii

Z =

Z11 Z12

Z21 Z22

 ,

where Z22 is (n − 1) × (n − 1). Note that by assumption, we
have det Z22 6= 0 almost surely. Now, by the Schur
determinant formula, we have

det Z = det Z22 det
(
Z11 − Z12Z

−1
22 Z21

)
= (det Z22)

(
Z11 − Z12Z

−1
22 Z21

)
.
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Non-singular Wishart distribution iii

We now have

P (|Z| = 0) = P (|Z| = 0, |Z22| 6= 0) + P (|Z| = 0, |Z22| = 0)
= P (|Z| = 0, |Z22| 6= 0)
= P (Z11 = Z12Z

−1
22 Z21, |Z22| 6= 0)

= E
(
P (Z11 = Z12Z

−1
22 Z21, |Z22| 6= 0 | Z12, Z22, Z21)

)
= E(0)
= 0,
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Non-singular Wishart distribution iv

where we used the laws of total probability (Line 1) and total
expectation (Line 4). Therefore, the result follows from
induction.

We are now ready to prove the main result: let S ∼ Wp(m, Σ)
with det Σ 6= 0, and write S = ∑m

i=1 YiYT
i , with

Yi ∼ Np(0, Σ). If we let Y be the m × p matrix whose i-th
row is Yi. Then

S =
m∑

i=1
YiYT

i = YTY.
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Non-singular Wishart distribution v

Now note that

rank(S) = rank(YTY) = rank(Y).

Furthermore, if we write Σ = LLT using the Cholesky
decomposition, then we can write

Z = Y(L−1)T ,

where the rows Zi of Z are Np(0, Ip) and rank(Z) = rank(Y).

Finally, we have
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Non-singular Wishart distribution vi

rank(S) = rank(Z)
≥ rank(Z1, . . . , Zp)
= p (a.s.),

where the last equality follows from our Lemma. Since
rank(S) = p almost surely, it is invertible almost surely.

Definition
If S ∼ Wp(m, Σ) with Σ positive definite and m ≥ p, we say
that S follows a nonsingular Wishart distribution. Otherwise,
we say it follows a singular Wishart distribution.
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Additional properties i

Let S ∼ Wp(m, Σ).

• We have E(S) = mΣ.
• If B is a q × p matrix, we have

BSBT ∼ Wp(m, BΣBT ).

• If T ∼ Wp(n, Σ), then

S + T ∼ Wp(m + n, Σ).
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Additional properties ii

Now assume we can partition S and Σ as such:

S =

S11 S12

S21 S22

 , Σ =

Σ11 Σ12

Σ21 Σ22

 ,

with Sii and Σii of dimension pi × pi. We then have

• Sii ∼ Wpi
(m, Σii)

• If Σ12 = 0, then S11 and S22 are independent.
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Characteristic function i

• The definition of characteristic function can be extended
to random matrices:

• Let S be a p × p random matrix. The characteristic
function of S evaluated at a p × p symmetric matrix T

is defined as

φS(T ) = E (exp(itr(TS))) .

• We will show that if S ∼ Wp(m, Σ), then

φS(T ) = |Ip − 2iΣT |−m/2.

• First, we will use the Cholesky decomposition Σ = LLT .
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Characteristic function ii

• Next, we can write

S = L

 m∑
j=1

ZjZT
j

LT ,

where Zj ∼ Np(0, Ip).
• Now, fix a symmetric matrix T . The matrix LT TL is also

symmetric, and therefore we can compute its spectral
decomposition:

LT TL = UΛUT ,

where Λ = diag(λ1, . . . , λp) is diagonal and UUT = Ip.
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Characteristic function iii

• We can now write
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Characteristic function iv

tr(TS) = tr

TL

 m∑
j=1

ZjZT
j

LT


= tr

UΛUT

 m∑
j=1

ZjZT
j


= tr

ΛUT

 m∑
j=1

ZjZT
j

U


= tr

Λ

 m∑
j=1

(UT Zj)(UT Zj)T

 .
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Characteristic function v

• Two key observations:
• UT Zj ∼ Np(0, Ip);
• tr

(
ΛZjZT

j

)
=
∑p

k=1 λkZ2
jk.

• Putting all this together, we get

E (exp(itr(TS))) = E

exp

i
m∑

j=1

p∑
k=1

λkZ2
jk


=

m∏
j=1

p∏
k=1

E
(
exp

(
iλkZ2

jk

))
.
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Characteristic function vi

• But Z2
jk ∼ χ2(1), and so we have

φS(T ) =
m∏

j=1

p∏
k=1

φχ2(1)(λk).

• Recall that φχ2(1)(t) = (1 − 2it)−1/2, and therefore we
have

φS(T ) =
m∏

j=1

p∏
k=1

(1 − 2iλk)−1/2.
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Characteristic function vii

• Since ∏p
k=1(1 − 2iλk)−1/2 = |Ip − 2iΛ|−1/2, we then have

φS(T ) =
m∏

j=1
|Ip − 2iΛ|−1/2

= |Ip − 2iΛ|−m/2

= |Ip − 2iUΛUT |−m/2

= |Ip − 2iLT TL|−m/2

= |Ip − 2iΣT |−m/2
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Density of Wishart distribution

• Let S ∼ Wp(m, Σ) with Σ positive definite and m ≥ p.
The density of S is given by

f(S) = 1
2pm/2Γp(m

2 )|Σ|m/2 exp
(

−1
2

tr(Σ−1S)
)

|S|(m−p−1)/2,

where

Γp(u) = πp(p−1)/4
p−1∏
i=0

Γ
(

u − i

2

)
, u >

1
2

(p − 1).

• Proof : Compute the characteristic function using the
expression for the density and check that we obtain the
same result as before (Exercise).
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Sampling distribution of sample covariance

• We are now ready to prove the results we stated a few
lectures ago.

• Recall again the univariate case:
• (n−1)s2

σ2 ∼ χ2(n − 1);
• X̄ and s2 are independent.

• In the multivariate case, we want to prove:
• (n − 1)Sn ∼ Wp(n − 1, Σ);
• Ȳ and Sn are independent.

• We will show that using the multivariate Cochran
theorem
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Cochran theorem

Let Y1, . . . , Yn be a random sample with Yi ∼ Np(0, Σ), and
write Y for the n × p matrix whose i-th row is Yi. Let A, B

be n × n symmetric matrices, and let C be a q × n matrix of
rank q. Then

1. YT AY ∼ Wp(m, Σ) if and only if A2 = A and trA = m.
2. YT AY and YT BY are independent if and only if AB = 0.
3. YT AY and CY are independent if and only if CA = 0.
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Application i

• Let C = 1
n
1T , where 1 is the n-dimensional vector of

ones.
• Let A = In − 1

n
11T .

• Then we have

YT AY = (n − 1)Sn, CY = ȲT .

• We need to check the conditions of Cochran’s theorem:
• A2 = A;
• CA = 0;
• trA = n − 1.
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Application ii

• Using Parts 1. and 3. of the theorem, we can conclude
that

• (n − 1)Sn ∼ Wp(n − 1, Σ);
• Ȳ and Sn are independent.
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Proof (Cochran theorem) i

Note 1: We typically only use one direction (⇐).

Note 2: We will only prove the first part.

• Since A is symmetric, we can compute its spectral
decomposition as usual:

A = UΛUT .

• By assuming A2 = A, we are forcing the same condition
on the eigenvalues:

Λ2 = Λ.

• But only two real numbers are possible λi ∈ {0, 1}.

32



Proof (Cochran theorem) ii

• Given that trA = m, and after perhaps reordering the
eigenvalues, we have

λ1 = · · · = λm = 1, λm−1 = · · · = λn = 0.

• Now, set Z = UTY, and let Zi be the i-th row of Z. We
have

Cov(Z) = E((UTY)T (UTY))
= E(YT UUTY)
= E(YTY)
= Cov(Y).
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Proof (Cochran theorem) iii
• Therefore, the covariance structures of Y and Z are the

same:
• The vectors Z1, . . . , Zn are still independent.
• Zi ∼ Np(0, Σ).

• We can now write

YT AY = YT UΛUTY
= ZT ΛZ

=
m∑

i=1
ZiZT

i .

• Therefore, we conlude that YT AY ∼ Wp(m, Σ).
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Bartlett decomposition i

• Recall that the Wishart distribution is a distribution on
the set of positive semi-definite matrices.

• This implies symmetry and a non-negative eigenvalues.
• These constraints are natural for covariance matrices, but

it forces dependence between the entries that can make
computations difficult.

• The Bartlett decomposition is a reparametrization of
the Wishart distribution in terms of p(p + 1)/2
independent entries.

• You can think of it as a stochastic version of the
Cholesky decomposition.
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Bartlett decomposition ii

• Let S ∼ Wp(m, Σ), where m ≥ p and Σ is positive
definite, and write S = LLT using the Cholesky
decomposition. Then the density of L is given by

f(L) = 2p

K

p∏
i=1

ℓm−i
ii exp

(
−1

2
tr(Σ−1LLT )

)
,

where K = 2mp/2|Σ|Γp(m/2) and ℓij is the (i, j)-th entry
of L.
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Proof i

• This result will follow from the formula for the density
after a transformation.

• Recall that the density of S is:

f(S) = 1
K

exp
(

−1
2

tr(Σ−1S)
)

|S|(m−p−1)/2.

• Note that we have

tr(Σ−1S) = tr(Σ−1LLT ),

|S| = |LLT | = |L|2 =
p∏

i=1
ℓ2

ii.

37



Proof ii

• Putting all this together, we have

f(LLT ) = 1
K

exp
(

−1
2

tr(Σ−1S)
)

|S|(m−p−1)/2

= 1
K

exp
(

−1
2

tr(Σ−1LLT )
) p∏

i=1
ℓm−p−1

ii .

• To get the density of L, we need to multiply by the
Jacobian of the inverse transformation L 7→ LLT .
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Proof iii
• A simple yet tedious computation (see for example

Theorem 2.1.9 in Muirhead) gives:

|J | = 2p
p∏

i=1
ℓp−i+1

ii .

• Finally, we get the expression we wanted:

f(L) = 2p∏p
i=1 ℓp−i+1

ii

K
exp

(
−1

2
tr(Σ−1LLT )

) p∏
i=1

ℓm−p−1
ii

= 2p

K
exp

(
−1

2
tr(Σ−1LLT )

) p∏
i=1

ℓm−i
ii .
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Corollary i

If Σ = Ip, the elements ℓij are all independent, and they follow
the following distributions:

ℓ2
ii ∼ χ2(m − i + 1),

ℓij ∼ N(0, 1), i > j.

Proof:

• When Σ = Ip, the expression for tr(Σ−1LLT ) simplifies:

tr(Σ−1LLT ) = tr(LLT ) =
∑
i≥j

ℓ2
ij.
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Corollary ii

• This allows us to rewrite the density f(L) (up to a
constant):

f(L) ∝ exp
(

−1
2

tr(LLT )
) p∏

i=1
ℓm−i

ii

= exp

−1
2
∑
i≥j

ℓ2
ij

 p∏
i=1

ℓm−i
ii

=

∏
i>j

exp
(

−1
2

ℓ2
ij

)
{ p∏

i=1
exp

(
−1

2
ℓ2

ii

)
ℓm−i

ii

}
,
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Corollary iii

which is the product of the marginals we wanted.
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Example i

B <- 1000
n <- 10
p <- 5

bartlett <- replicate(B, {
X <- matrix(rnorm(n*p), ncol = p)
L <- chol(crossprod(X))

})

dim(bartlett)
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Example ii

## [1] 5 5 1000

library(tidyverse)

# Extract and plot diagonal^2
diagonal <- purrr::map_df(seq_len(B), function(i) {

tmp <- diag(bartlett[,,i])^2
data.frame(matrix(tmp, nrow = 1))

})
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Example iii

# Put into long format
diag_plot <- gather(diagonal, Entry, Value)

# Add chi-square means
diag_means <- data.frame(

Entry = paste0("X", seq_len(p)),
mean = n - seq_len(p) + 1

)
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Example iv

ggplot(diag_plot, aes(Value, fill = Entry)) +
geom_density(alpha = 0.2) +
theme_minimal() +
geom_vline(data = diag_means,

aes(xintercept = mean,
colour = Entry),

linetype = 'dashed')
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Example v
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Example vi

# Extract and plot off-diagonal
off_diagonal <- purrr::map_df(seq_len(B), function(i) {

tmp <- bartlett[,,i][upper.tri(bartlett[,,i])]
data.frame(matrix(tmp, nrow = 1))

})
dim(off_diagonal)

## [1] 1000 10
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Example vii

# Put into long format
offdiag_plot <- gather(off_diagonal, Entry, Value)

ggplot(offdiag_plot, aes(Value, group = Entry)) +
geom_density(fill = NA) +
theme_minimal()
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Example viii
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Distribution of the Generalized Variance i

• As an application of the Bartlett decomposition, we will
look at the distribution of the generalized variance:

GV (S) = |S|, S ∼ Wp(m, Σ).

• Theorem: If S ∼ Wp(m, Σ) with m ≥ p and Σ positive
definite, then the ratio

GV (S)/GV (Σ) = |S|/|Σ|

follows the same distribution as a product of chi-square
distributions:

p∏
i=1

χ2(m − i + 1).

51



Distribution of the Generalized Variance ii

Proof:

• First, we have

|S|
|Σ|

= |S||Σ−1| = |Σ−1/2||S||Σ−1/2| = |Σ−1/2SΣ−1/2|.

• Moreover, we have that Σ−1/2SΣ−1/2 ∼ Wp(m, Ip), so
we can use the result of the Corollary above.

• If we write Σ−1/2SΣ−1/2 = LLT using the Bartlett
decomposition, we have

|S|
|Σ|

= |LLT | = |L|2 =
p∏

i=1
ℓ2

ii.
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Distribution of the Generalized Variance iii

• Our result follows from the characterisation of the
distribution of ℓ2

ii.
• Note: The distribution of GV (S)/GV (Σ) does not

depend on Σ.
• It is a pivotal quantity.

• Note 2: If Sn is the sample covariance, then
(n − 1)Sn ∼ Wp(n − 1, Σ) and therefore

(n − 1)p GV (Sn)
GV (Σ)

∼
p∏

i=1
χ2(n − i).
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Example i

• We will use the Ramus dataset (see slides on Multivariate
normal).

• We will construct a 95% confidence interval for the
population generalized variance.

• Under a multivariate normality assumption, which
probably doesn’t hold…
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Example ii

var_names <- c("Age8", "Age8.5",
"Age9", "Age9.5")

dataset <- ramus[,var_names]
dim(dataset)

## [1] 20 4
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Example iii

# Sample covariance
Sn <- cov(dataset)

# Generalized variance
det(Sn)

## [1] 1.068328
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Example iv

# Simulate quantiles
set.seed(7200)
n <- nrow(dataset)
p <- ncol(dataset)
B <- 1000

simulated_vals <- replicate(B, {
prod(rchisq(p, df = n - seq_len(p)))/((n-1)^p)

})
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Example v

bounds <- quantile(simulated_vals,
probs = c(0.025, 0.975))

bounds

## 2.5% 97.5%
## 0.1409302 2.0241338
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Example vi

# 95% Confidence interval (reverse bounds)
det(Sn)/rev(bounds)

## 97.5% 2.5%
## 0.527795 7.580545
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Visualization i

• Visualizing covariance/correlation matrices can be
difficult, especially when the number of variables p

increases.
• One possibility is a heatmap, that assign a colour to

the individual coariances/correlations.
• Visualizing distributions of random matrices is even

harder
• Already when p = 2, this is a 3-dimensional object…
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Visualization ii

• One possibility is to decompose the distribution of a
random matrix (or a sample thereof) into a series of
univariate and bivariate graphical summaries. For
example:

• Histograms of the covariances/correlations;
• Scatter plots for pairs of covariances;
• Histograms of traces and determinants.
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Example i

# Recall our covariance matrix for the Ramus dataset
round(Sn, 2)

## Age8 Age8.5 Age9 Age9.5
## Age8 6.33 6.19 5.78 5.55
## Age8.5 6.19 6.45 6.15 5.92
## Age9 5.78 6.15 6.92 6.95
## Age9.5 5.55 5.92 6.95 7.46
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Example ii

# Visually we get
lattice::levelplot(Sn, xlab = "", ylab = "")
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Example iii
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Example iv

# Perhaps easier to interpret as correlations
# But be careful with the scale!
lattice::levelplot(cov2cor(Sn),

xlab = "", ylab = "")
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Example v
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Example vi

Next, we will visualize the distribution of Sn using bootstrap.

B <- 1000
n <- nrow(dataset)

boot_covs <- lapply(seq_len(B), function(b) {
data_boot <- dataset[sample(n, n, replace = TRUE),]
return(cov(data_boot))

})
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Example vii

# Extract the diagonal entries
diagonal <- purrr::map_df(boot_covs, function(Sn) {

tmp <- diag(Sn)
data.frame(matrix(tmp, nrow = 1))
})
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Example viii

# Put into long format
diag_plot <- gather(diagonal, Entry, Value)

ggplot(diag_plot, aes(Value, fill = Entry)) +
geom_density(alpha = 0.2) +
theme_minimal()
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Example ix
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Example x

# Multivariate normal theory predicts
# the diagonal entry should be scaled chi-square
ggplot(diag_plot, aes(sample = Value)) +
geom_qq(distribution = qchisq,

dparams = list(df = n - 1)) +
theme_minimal() + facet_wrap(~ Entry) +
geom_qq_line(distribution = qchisq,

dparams = list(df = n - 1))
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Example xi
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Example xii

# Finally, let's look at pairwise scatterplots
# for off-diagonal entries
off_diag <- purrr::map_df(boot_covs, function(Sn) {

tmp <- Sn[upper.tri(Sn)]
data.frame(matrix(tmp, nrow = 1))
})
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Example xiii

# Add column names
names(off_diag) <- c(paste0("8:",c("8.5","9","9.5")),

paste0("8.5:",c("9","9.5")),
"9:9.5")

GGally::ggpairs(off_diag)
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Example xiv
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Summary

• Wishart random matrices are sums of outer products
of independent multivariate normal variables with the
same scale matrix Σ.

• They allow us to give a description of the sample
covariance matrices and its functionals:

• E.g. trace, generalized variance, etc.
• The Bartlett decomposition gives us a

reparametrization of the Wishart distribution with
independent constaints of the entries.

• Positive diagonal entries; contant zero above the
diagonal; unconstrained below the diagonal.
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