Appendix A
Matrix Algebra

A.1 Introduction

This appendix gives (i) a summary of basic definitions and results in
matrix algebra with comments and (ii) details of those results and proofs
which are used in this book but normally not treated in undergraduate
Mathematics courses. It is designed as a convenient source of reference to
be used in the rest of the book. A geometrical interpretation of some of
the results is also given. If the reader is unfamiliar with any of the results
not proved here he should consult a text such as Graybill (1969, espe-
cially pp. 4-52, 163-196, and 222-235) or Rao (1973, pp. 1-78). For the
computational aspects of matrix operations see for example Wilkinson
(1965).

Definition A matrix A is a rectangular array of numbers. If A has n rows
and p columns we say it is of order nx p. For example, n observations on P
random variables are arranged in this way.

Notation 1 We write matrix A of order n xp as

[(dyy @z ay, |
Azy daz ' Ay

A= . =':aii}1 (A1.1)

'a:nt ar:Z e 'a'np_.

where a; is the element in row i and column j of the matrix A,
i1=1,....n; j=1,....p. Sometimes, we write (A), for ;.
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We may write the matrix A as A(nxp) to emphasize the row and
column order. In general, matrices are represented by boldface upper
case letters throughout this book, e.g. A, B, X, ¥, Z. Their elements are
represented by small letters with subscripts.

Definition The transpose of a matrix A is formed by interchanging the
rows and columns:

Ay Qg " Gy
Az Q3 ' Gy
A=) h ’
G Aoy~ Gy
Definition A matrix with column-order one is called a column vector,
Thus
ay
ay
g= -
HII.

is @ column vecior with n components,

In general, boldface lower case letters represent column vectors. Row
vectors are written as column vectors transposed, i.e.

a=(ay...,8)

Notation 2 We write the columns of the matrix A as a;,, 8y, ..., 8%,
and the rows (if written as column vectors) as a},a,...,a! so that

ra]
ay
A:(a{]]!a[sz---s.{p}}: ' (A‘]-z)
&
where
yj a;y
a;,= . a4 =
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Definition A matrix written in terms of its sub-matrices is called a
partitioned matrix.

Notation 3 Let A,,. A,;, A,,, and A,, be submatrices such that
A;i(rxs) has elements a;, i=1,...,r; j=1,...,5 and so on. Then we
write

A(rxs) Ap(rx{p—s)) ]
As(n—r)xs) Axplln—r)x(p—s)J

Obviously, this notation can be extended to contain further partitions
of A,q, A, etc.

A list of some important types of particular matrices is given in Table
A.1.1. Another list which depends on the next section appears in Table
A3l

Table A.1.1 Particular matrices and types of matrix (List 1). For List 2 see
Table A.3.1.

A{nXp}=[

Trivial
MName Definiton Notation Examples
1 Scalar p=n=1 a,b (1)
2a Column vector p=1 ab,. .. G)
1
2b Unit vector (T s 1) lord, (1)
3 Rectangular pPHEu Alnxp)
1 3
4 Square p=n Alpxp) (4 5)
. o . 20
4a Diagonal p=n,a;=0,i#] diag (ay) (0 1)
1 0
4b ldentity diag (1) lorl, ( 0 l)
4¢ Symmetric a; = ay G :]
Y [ |
4d Unit matrix p=na;=1 J.=11 (] ])
4e Triangular matrix a; = 0 below the
(upper) diagonal A' 1 0
. 2
Triangular matrix a; =0 above the (' 20
(lower) diagonal A 3 25
5 Asymmetric a; = a, (; ;)

D0 o0
6 Null =)
N L (u 0 0)
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As shown in Table A.1.1 a square matrix A(p X p) is diagonal if a; =0
for all i# j. There are two convenient ways to construct diagonal matrices.

Ifa=(as. ..

diag (a) = diag (a, ) = diag (a,, . .

and

Diag (B)=

each defines a diagonal matrix.

A.2 Matrix Operations

ay

)=

h11 oocee |

, @,)" is any vector and B(p X p) is any square matrix then

0

Table A.2.1. gives a summary of various important matrix operations. We
deal with some of these in detail, assuming the definitions in the table.

Tahle A.2,1 Basic matrix operations

Operation Restrictions Definitions Remarks
1 Addition A. B of the same order A +B=(a,+b,)
2 Subtraction A, B of the same order A—B=(a;—b;)
3a Scalar
multiplication cA=lca;)
3b Inner product &, b of the same order a'h= i"aibi
3¢ Multiplication  Number of columns
of A equals number
of rows of B AB=(wb,,) AB=BA
4 Transpose A'=(m,,my,...,n,) Section A21
5 Trace A square trA =¥ a, Section A.2.2.
6 Determinant A square 1Al Section A.2.3.
7 Inverse A square and |A]#0 AAT=ATIA=T (A+B)'=A'+BY,
Section A.2.4
8 pg-inverse (A7) Alnxp) AA A=A Section A8
A.21 Transpose
The transpose satisfies the simple properties
(A=A, (A+B)=A"+B', (AB)=B'A". (A.2.1)
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For partitioned A, 2 [ A7, A’m]
Al AL
If A is a symmetric matrix, a; = a;, so that
A=A
A.2,2 Trace

The trace function, tr A=2ZXa,, satisfies the following properties for
A(pxp). B(pxp), Clpxn}), D(nxp), and scalar a:

Ir o = a, trA+B=trA+trB, traA=atrA (A.22a)
trCD=trDC=Y c,d,. (A.2.2b)

Y xAx,=tr (AT), where T= Y xx. (A.2.2¢)
To prove this last property, note that since ¥ x!Ax, is a scalar. the left-
hand side of (A.2.2c) is
tr z X[AX, = Z trx;Ax; by (A.2.2a)
=Y trAx,x! by (A.2.2b)
=trA Y x;x/ by (A.2.2a).
As a special case of (A.2.2b) note that
trCC'=trC'C=) 2. (A.2.2d)
A.2.3 Determinants and cofactors
Definition The determinant of a square matrix A is defined as
Al=E )01, -« Bpriprs (A.2.3a)

where the summation is taken over all permutations T of (1,2, .. .. p), and
|7| equals +1 or —1, depending on whether T can be written as the product
of an even or odd number of ranspositions.

For p=2,
2 IA|=a1aazz‘atzﬂ:|- (A.2.3b)

Definition The cofactor of a, is defined by (—1)' "' times the minor of a,,
where the minor of a;, is the value of the determinant obtained after deleting
the ith row and the jth column of A.

We denote the cofactor of a;, by A,. Thus for p=3,

A2z Q33 Ay A2y _
A= ” Ap=— ' A=

Q33  d33 Ay day A3 Qs

(A.2.3c)
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Definition A square matrix is non-singular if |A|#0; otherwise it is
singular.

We have the following results:

P i

D Al=) a;A;= ¥ aA,,  any i, (A.2.3d)
i=1 i=1
but 5
Y ap A =0, i#] (A.2.3€)
k=1
(II) If A is triangular or diagonal,
|Al=]T a.. (A.2.3)
(IID) |cA|=c" |Al. (A.2.3g)
(IV) |AB|=|A| |BI. (A.2.3h)
(V) For square submatrices A{p % p) and B(gq % q),
A C .
! : B\_ A [B]. (A.2.30)
Ay Ap -1 3
(V1) My e |Ar1] Az — AoiAyy A=Az |A1 — AppAgs Ay,
3 SeE (A.2.3))
A: # =|Al (b—a' A a).
a b

(VIL) For B(p % n) and C(n X p), and non-singular A(p X p),

|A +BC|=|A||l, + A~'BC|=|A|]I,+ CA™'B|, (A.2.3k)
|A+b'aj=|A| (1+b'A™"a).
Remarks (1) Properties (I)-(III) follow easily from the definition
(A.2.3a). As an application of (I), from (A.2.3b), (A.2.3¢), and (A.2.3d),
we have, for p=3,
Jﬁlzﬂluiﬂzzﬂn"ﬂzaasz}_ﬂu(ﬂ:lﬂsa—ﬂzaﬂn]"'013[021032‘“31“2:]-

(2) To prove (V), note that the only permutations giving non-zero
terms in the summation (A.2.3a) are those taking {1....,p}to {L,..., p}
and {p+1,...,p+qlto{p+1,...,p+q}.

(3) To prove (VI), simplify BAB' and then take its determinant where

B= [[ -3121‘521]'

0 1
From (VI), we deduce, after putting A'' =A, A'"=¥, etc.,
A .
: =|Al{c—x'A 'x}. (A.2.31)
X
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(4) To prove the second part of (VII), simplify

I, —A'B
C I
using (VI). As special cases of (VII) we see that, for non-singular A,
[A+bb'|=|A|(1+b'A'Db), (A.2.3m)
and that, for B(p xn) and C(n xp),
I, +BC|=|I, +CB|. (A.2.3n)

In practice, we can simplify determinants using the property that the
value of a determinant is unaltered if a linear combination of some of the
columns (rows) is added to another column (row).

(5) Determinants are usually evaluated on computers as follows. A is
decomposed into upper and lower triangular matrices A =LU. If A>(),
then the Cholesky decomposition is used (i.e. U=L" so A =LL"). Other-
wise the Crout decomposition is used where the diagonal elements of U
are ones.

A.2.4 Inverse

Definition As already defined in Table A.l.1, the mverse of A s the
unique matrix A" satisfying

AA'=A'A=L (A.2.4a)

The inverse exists if and only if A is non-singular, that is, if and only if
|A|# 0.

We write the (i, j)th element of A" by a". For partitioned A, we write

> Al A2
"‘I:[Azl Azz]'

The following properties hold:
|

M A= (A, (A.2.4b)
(I (cA) '=c'A7", (A.2.4c)
(III) (AB) '=B 'A ", (A.2.4d)
(IV) The unique solution of Ax=bisx=A""b. (A.2.4e)

(V) If all the necessary inverses exist, then for A(pxp). Bipxn),
Cinxn), and D(n xp).
(A+BCD) '=A"'—A"'B(C""+DA'B)"'DA, (A.2.45)
(A+ab) '=A"'—{(A ' a)(b’ A )(1+b A a) )
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(VI) If all the necessary inverses exist. then for partitioned A, the
elements of A~ are
A”:(AH_A!Z&EJAII}_R A?_z:(A-_r:_ﬁnAI;Aiz}'-}
A =—A"A AL, AT =-A5AA"M.

Alternatively, A'? and A*' can be defined by (A.2.4g)

Aw:—AI;IA.zAZZ. Aﬂ:—AzzAz,Af;'.
(V1) For symmetrical matrices A and D, we have, if all necessary
inverses exist

Ay = AL M -E it ,
(B, D) =( a 0)+( l)(D—BA‘B) H—E".I)

where E=A 'B.

Remarks (1) The result (I) follows on using (A.2.3d), (A.2.3e). As a
simple application. note that, for p=2, we have

= ! ( dz2 _ﬂu)
Ay Qry — A2z ‘a4z ay,/

(2) Formulae (ID-(VI) can be verified by checking that the product of
the matrix and its inverse reduces to the identity matrix, e.g. to verify
(111), we proceed

(AB) (AB)=B 'A '(AB)=B 'IB=1.

(3) We have assumed A to be a square matrix with [A|#0 in defining
A~' For A(nxp), a generalized inverse is defined in Section A.8.

(4) In computer algorithms for evaluating A~ ', the following methods
are commonly used. If A is symmetric, the Cholesky method is used,
namely, decomposing A into the form LL' where L is lower triangular
and then using A™'=(L'YL™'. For non-symmetric matrices, Crout’s
method is used, which 1s a modification of Gaussian elimination.

A.2.5 Kronecker products

Definition Let A =(a;) be an (m X n) matrix and B=(by) be a (pxq)
matrix. Then the Kronecker product of A and B is defined as

a,B a,B - a,.B
ayB apB - a,B
ﬂ,.,“n a.,‘zn il CI,,,,,B

which is an (mp > ng) matrix. It is denoted by A @ B.
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Definition If X is an (x x p) matrix let X" denote the np-vector obtained
by “wvectorizing™ X; that is, by stacking the columns of X on top of one
another so that

Xy

X2y

XY=

Xip

From these definitions the elementary properties given below easily
follow:

(I) a(A@B)=(aA)@B=AQ («B) for all scalar a, and hence
can be written without ambiguity as « A @ B,
(I ARBRC)=AXB)®C. Hence this can be written as
ARB®C.
(II) (ARB)/=A'"®B'.
(IV) (A@B)F® G)=(AF) @ (BG). Here parentheses are necessary.
(V) (A®B)'=A"®B" for non-singular A and B.
(VI}) (A+B)/®C=ARC+BR®C.
(VID AR (B+C)=A@B+ARC.
(VIII) (AXB)" =(B'® A)X".
(IX) tr (A®B) = (tr A) (tr B).

A.3 Further Particular Matrices and Types of Matrix

Table A.3.1 gives another list of some important types of matrices. We
consider a few in more detail.

A.3.1 Orthogonal matrices

A square matrix A(n X n)'is orthogonal if AA'=1. The following proper-
ties hold:

(I) A—'=A"
(I A'A =1L
(III) |A|==1.
(IV) afa; =0, i#j; aja, = 1. a},,a,=0, i#]; a/,a,=1.
(V) C=AB is orthogonal if A and B are orthogonal.

Remarks (1) All of these properties follow easily from the definition
AA'=1. Result (IV) states that the sum of squares of the elements in each
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Table A.3.1 Particular types of matrices (List 2)

Name Definition Examples Details in
g [12 .
Non-singular |[Al#0 G ¥ Section A.2.3.
1 A
Singular |Al=0 ; 2] Section A.2.3.
8 —si
Orthogonal AA'=A'A =1 [cos = 8'] Section A.3.1.
sin & cos &
[1
Equicorrelation E=(1—pli+p) ‘?] Section A.3.2,
Lp
o ir1 -1
Idempotent A=A 3l-1 )
Centring matrix, H, H,=I,—n'J, Section A.3.3.
Positive
definite (p.d.) XAx>0 for all x#0 Xy +x3 Section A.7.
Positive semi-
definite (p.s.d.) xAx=0 for all x#0 (x; —x,)° Section A.7.

row (column) is unity whereas the sum of the cross-products of the
elements in any two rows (columns) is zero.

(2) The Helmert matrix is a particular orthogonal matrix whose col-
umns are defined by

B={n2, .

aln=(dy...,d,—(j—1)d,0,...,0), i=2,...,m,
where d, ={j(j—1)}""?, is repeated j—1 times.
(3) Orthogonal matrices can be used to represent a change of basis, or
rotation. See Section A.S,

A.3.2 Equicorrelation matrix
Consider the (p % p) matrix defined by
E=(1-p)I+pd, (A.3.2a)

where p is any real number. Then e; =1, ¢, =p, for i# ]. For statistical
purposes this matrix is most useful for —(p—1)"'<p <1, when it is called
the equicorrelation matrix,

Direct verification shows that, provided p#1,—(p—1)"", then E™'
exists and is given by

E'=(1-p) ' I-p{l+(p—1)p} 7] (A.3.2b)
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Its determinant is given by
El=(1—pF Yl+p(p—-1} (A.3.2¢)

This formula is most easily verified using the eigenvalues given in Remark
6 of Section A.6.

A.3.3 Centring matrix

The (n % n) centring matrix is defined by H=H, =1—n"'J, where J=11".
Then

() '=H, H"=H.

(II) H1=0, HI=JH=0.

(IIT) Hx=x—x1, where i=n"Y% x.

(TV) XHx=n "X (x—%)".
Remark (1) Property (1) states that H is symmetric and idempotent.

(2) Property (IIT) is most important in data analysis. The ith element of
Hx is x,— X Therefore, premultiplying a column vector by H has the
effect of re-expressing the elements of the vector as deviations from the
mean. Similarly, premultiplying a matrix by H re-expresses each element
of the matrix as a deviation fram its column mean, i.e. HX has its (i, j)th
element x; —X, where X is the mean of the jth column of X. This
“centring” property explains the nomenclature for H.

A.4 Vector Spaces, Rank, and Linear Equations

A.4.1 Vector spaces

The set of vectors in R" satisfies the following properties. For all x, ye R"
and all A, pe R,

(1) AMx+y)=Ax+Ay,
(2) (A+p)x=Ax+px,
(3) (Ap)x=A(px),

(4) lx=x.

Thus R™ can be considered as a vector space over the real numbers R.

Definition If W is a subset of R" such that for all x, ye W and Ae R
Ax+yle W,

then W is called a vector subspace of R".

Two simple examples of subspaces of R" are {0} and R" itself.
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Definition Veciors x,,....x, are called linearly dependent if there exist
numbers Ay, ..., A, not all zero, such that

l]!1+ - o +Atxk =“-
Otherwise the k vectors are linearly independent,

Definition Let W be a subspace of R". Then a basis of W is a maximal
linearly independent set of vectors.

The following properties hold for a basis of W

(I) Every basis of W contains the same (finite) number of elements.
This number is called the dimension of W and denoted dim W. In
particular dim R" =n.

(IT) If x,,...,x; is a basis for W then every element x in W can be
expressed as a linearly combination of x,,...,x.: that is, x=
AXy+ ... A x, for some numbers Ay, ..., A

Definition The inner (or scalar or dot) product befween two vectors
x, Y€ R" is defined by

t-Jf:r’y:iil XVi-
The vectors x and y are called orthogonal if x-y=0.
Definition The norm of a vector xe R" is given hy
Il =G0 =(Z )
Then the distance between two vectors x and y is given by
llxe— .

Definition A basis x,, ..., % of a subspace W of R" is called orthonor-
mal if all the elements have norm 1 and are orthogonal to one another;
that is, if

X "X ‘—{1' i=j!
oo, i#].

In particular, if A{nxn) is an orthogonal matrix then the columns of A
form an orthonormal basis of R".

A.4.2 Rank

Definition The rank of a matrix A(nxp) is defined as the maximum
number of linearly independent rows (columns) in A.
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We denote it by r(A) or rank (A).
The following properties hold:

(I) O=<r(A)=<min(n, p). (A.4.2a)
(IT) r(A)=r(A"). (A.4.2b)
(III) r(A+B)<r(A)+r(B). ({A.4.2¢)
(IV) r(AB)<min{r{A), r(B)}. (A.4.2d)
(V) r(A'A)=r(AA Y =r(A). (A.4.2¢e)
(VI) If B(nxn) and C(p x p) are non-singular then r(BAC)=r(A).

(A.4.26)

(VII) If n=p then r(A)=p if and only if A is non-singular.  (A.4.2g)
Table A.4.1 gives the ranks of some particular matrices.

Remarks (1) Another definition of r(A) is r{A)=the largest order of
those (square) submatrices which have non-vanishing determinants.

(2) If we define M(A) as the vector subspace in R" spanned by the
columns of A, then riA)=dim M(A) and we may choose linearly inde-
pendent columns of A as a basis for M(A). Note that for any p-vector x,
Ax=yx8,,t ... Tx,8,, is a linear combination of the columns of A and
hence Ax lies in M(A).

(3) Define the null space of A(nxp) by

Ni{A)={xe R" :Ax=0}.

Then N({A) is a vector subspace of R” of dimension k, say. Let ey, .. ., e,
be a basis of R" for which e,,...,e; are a basis of N(A), Then
Aey .y, ... Ae, form a maximally linearly independent set of vectors in
M(A), and hence are a basis for M(A). Thus, we get the important result

dim N({A)+dim M{A)=p. (A.4.2h)

(4) To prove (V) note that if Ax=0, then A'Ax=0; conversely if
A'Ax=0 then x¥A’'Ax=|Ax/"=0 and so Ax=0. Thus N(A)=N(A'A).
Since A and A'A each have p columns, we see from (A.4.2h) that
dim M(A)=dim M(A'A) so that r(A)=r(A'A).

Table A.4.1 Rank of some matrices

Matrix Rank
Non-singular A(p % p) P
diag (&) Number of non-zero a;
n n—1
[dempotent A tr A

CAB, non-singular B, C riA)
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(5) If A is symmetric, its rank equals the number of non-zero eigen-
values of A. For general A(n xp), the rank is given by the number of
non-zero eigenvalues of A'A. See Section A.6.

A.4.3 Linear equations
For the n linear equations
X+ ...+ X8,,=b (A.4.3a)
or
Ax=h (A.4.3b)
with the coefficient matrix A(n X p), we note the following results:
(I) If n=p and A is non-singular, the unigue solution is
:=A*'h:ﬁ[ﬂ.h—]'b, (A.4.3c)

(II) The equation is consistent (i.e. admits at least one solution) if and
only if

r(A)y=r[(A, b)] (A.4.3d)

(III) For b=0, there exists a non-trivial solution (i.e. x#0) if and only
if r(A)<p.
(IV) The equation A'A = A'b is always consistent. (A.4.3e)

Remarks (1) To prove (II) note that the vector Ax is a linear combina-
tion of the columns of A. Thus the equation Ax=b has a solution if and
only if b can be expressed as a linear combination of the columns of A.

(2) The proof of (III) is immediate from the definition of rank.

(3) To prove (IV) note that M(A'A) < M(A') because A'A is a matrix
whose columns are linear combinations of the columns of A', From
Remark 4 of Section A.4.2 we see that dim M(A'A)=dim M(A)=
dim M(A") and hence M{A'A)=M(A'). Thus, A'be M(A'A), and so
r(A’A)=r(A'A, A'D).

A.5 Linear Transformations

Definitions The transformation from x(p = 1) to y(nx 1) given by
y=Ax+b, (A.5.1)

where A is an (nxp) mairix is called a linear transformation. For n =p,




MULTIVARIATE ANALYSIS 466

the transformation is called non-singular if A is non-singular and in this
case the inverse transformation is

x=A"'(y—b).
An orthogonal trensformation is defined by
Yy =Ax, (A.5.2)

where A is an orthogonal matrix. Geometrically, an orthogonal matrix
represents a rotation of the coordinate axes. See Section A.10.

A.6 Eigenvalues and Eigenvectors

A.6.1 General results
If A(pxp) is any square matrix then
q(A)=|A—All (A.6.1)

is a pth order polynomial in A. The p roots of q(A), Ay, ..., A,. possibly
complex numbers, are called eigenvalues of A. Some of the A, will be
equal if g{A) has multiple roots.

Foreachi=1,...,p. |A—All=0, so A—A]l is singular. Hence, there
exists a non-zero vector y satisfying

Ay =AA. (A.6.2)

Any vector satisfying (A.6.2) is called a (right) eigenvector of A for the
eigenvalue A. If A; is complex, then » may have complex entries. An
eigenvector y with real entries is called standardized if

yy=1. (A.6.3)

If x and y are eigenvectors for A, and o € R, then x+y and ax are also
eigenvectors for A, Thus, the set of all eigenvectors for A, forms a
subspace which is called the eigenspace of A for A,

Since the coefficient of A" in g(A) is (—1)°, we can write g(A) in terms
of its roots as

q) =TT (A=) (A.6.4)

Setting A =0 in (A.6.1) and (A.6.4) gives
Al=TTA: (A.6.5)
that is, |A| is the product of the eigenvalues of A. Similarly, matching the
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coefficient of A in (A.6.1) and (A.6.4) gives
Y ay=trA=Y A; (A.6.6)

that is, tr A is the sum of the eigenvalues of A.
Let C(p X p) be a non-singular matrix. Then

|A—Al=|C||A—ACT'C||C'|=|CAC"—AlL. (A.6.7)

Thus A and CAC™' have the same eigenvalues. Further, if 4 is an
eigenvector of A for A, then CAC™'(Cy) = A,C¥, so that

v=Cxy

is an eigenvector of CAC™' for A,

Let @& R. Then |A+al—All=|A —(A—a)l|, so that A +al has eigen-
values A, +a. Further, if Ay= A4, then (A+al}y=(A +a)y, so that A
and A +al have the same eigenvectors.

Bounds on the dimension of the eigenspace of A for A, are given by the
following theorem.

Theorem A.6.1 Let A, denote any particular eigenvalue of A(p X p), with
eigenspace H of dimension r. If k denotes the multiplicity of A, in qiA),
then 1<r=<k.

Proof Since A, is an eigenvalue, there is at least one non-trivial eigen-
vector so r=1,

Let e,,..., e, be an .orthonormal basis of H and extend it so that
e, ..., e, f,...,f_ is an orthonormal basis of R". Write E=
(g, < 27 e) F=(f....,£_,). Then (E, F) is an orthogonal matrix so that

I, =(E,F)(E,F)=EE'+FF and [(E,F)|=1. Ao EAE=)\EE=A,L,
FF=1,_,. and FAE=A,FE=0. Thus
q(A)=|A—AI|=|(E, F)| |A - Al (E, F)
=|(E,F)[AEE'+ AFF — AEE' — AFF)(E, F)|
= (A=A, E'AF
0 FAF-AL_,
=(A; —A) q,(A), say,

using (A.2.3i). Thus the multiplicity of A, as a root of q(A) is at least r.

Remarks (1) If A is symmetric then r = k; see Section A.6.2. However,
if A is not symmetric, it is possible that r< k. For example,

3 )
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has eigenvalue () with multiplicity 2; however, the corresponding eigen-
space which is generated by (1, 0)’ only has dimension 1.

(2) If r=1, then the eigenspace for A, has dimension 1 and the
standardized eigenvector for A, is unique (up to sign).

Now let A(nxp) and B(p % n) be any two matrices and suppose n=p.
Then from (A.2.3])
=XL, =A

B i,
Hence the n eigenvalues of AB equal the p eigenvalues of BA, plus the

eigenvalue 0, n—p times. The following theorem describes the relation-
ship between the eigenvectors.

=(=A)""" [BA—AL|=|AB—AL|. (A.6.8)

Theorem A.6.2 For A(nxp) and B(p xn), the non-zero eigenvalues of
AB and BA are the same and have the same multiplicity. If x is a
non-trivial eigenvector of AB for an eigenvalue A#0, then y=Bx is a
non-trivial eigenvector of BA.

Proof The first part follows from (A.6.8). For the second part substitut-
ing y = Bx in the equation B(ABx)= ABx gives BAy = Ay. The vector x is
non-trivial if x#0. Since Ay=ABx=Ax=0, it follows that y#0
also. W

Corollsry A.6.2.1 For A(nxp), B(gxn),a(px1), and blgx 1), the matrix
Aab'B has rank at most 1. The non-zero eigenvalue, if present, equals
b'BAe, with eigenvector Aa.

Proof The non-zero eigenvalue of Aab'B equals that of b’'BAa, which
is a scalar, and hence is its own eigenvalue. The fact that Aa is a
corresponding eigenvector is easily checked. W

A.6.2 Symmetric matrices

If A is symmetric, it is possible to give more detailed information about
its eigenvalues and eigenvectors.

Theorem A.6.3 All the eigenvalues of a symmetric matrix A(p X p) are
real,

Proof If possible, let
y=x+iy, A=a+tib, 7=, (A.6.9)
From (A.6.2), after equating real and imaginary parts, we have

Ax=ax—by, Ay=bx+ay.
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On premultiplying by ¥ and x', respectively, and subtracting, we obtain
b=0. Hence from (A.6.9), A is real. W

In the above discussion, we can choose y =0 so we can assume ~ to be
real.

Theorem A.6.4 (Spectral decomposition theorem, or Jordan decomposi-
tion theorem) Any symmetric matrix A(p % p) can be written as

A=TAI"= Z MY ¥ (A.6.10)

where A is a diagonal matrix of eigenvalues of A, and T is an orthogonal
matrix whose columns are standardized eigenvectors.

Proof Suppose we can find orthonormal vectors gy, . . . . g such that
A= My, for some numbers A;. Then
‘Ar"r I- = 1.-
YioAYH = AyiYo = {[], %]
or in matrix form
I"AT =A. (A6.11)

Pre- and post-multiplying by I' and I" gives (A.6.10). From (A.6.7), A
and A have the same eigenvalues, so the elements of A are exactly the
eigenvalues of A with the same multiplicities.

Thus we must find an orthonormal basis of eigenvectors. Note that if
A#X; are distinct eigenvalues with eigenvectors x+y, respectively,
then AX'y=x'Ay=yAx=X\y¥x, so that ¥x=0. Hence for a symmerric
matrix, eigenvectors corresponding to distinct eigenvalues are orthogonal to
one another,

Suppose there are k distinct eigenvalues of A with corresponding
eigenspaces H,, ..., H, of dimensions r, ..., r. Let

k
e X &
=1

Since distinct eigenspaces are orthogonal, there exists an orthonormal set
of vectors e,, ...,e, such that the vectors labelled

fr=1l;
IE ﬂ+l....,iﬁ
i=1

=1

form a basis for H;. From Theorem A.6.1, r; is less than or equal to the
multiplicity of the corresponding eigenvalue. Hence by re-ordering the
eigenvalues A; if necessary, we may suppose

Ae, = \e, i=1,...,n
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and r<p. (If all p eigenvalues are distinct, then we know from Theorem
A.6.1 that r=p).
If r=p, set y;,=e, and the proof follows. We shall show that the
situation r<p leads to a contradiction, and therefore cannot arise.
Without loss of generality we may suppose that all of the eigenvalues of
A are strictly positive. (If not, we can replace A by A +«al for a suitable
o, because A and A +al have the same eigenvectors). Set

B=h—£ﬁieie{,
i=1
Then
trB=irA—i)\,-(e{e;]= i Jli}nl
i=1

i=r4l

since r<p. Thus B has at least one non-zero eigenvalue, say . Let x#0
be a corresponding eigenvector. Then for 1=j=<r,

fejx = e/Bx— {A,e‘, —z; L{e{ei}ﬁ]x={l,

so that x is orthogonal to e, j=1,..., r. Therefore,
fx=Bx= (A. =¥ Aieje{)x =Ax— ) Ale/x)e, = Ax

so that x is an eigenvector of A also. Thus ¢=A, for some i and x is a
linear combination of some of the e, which contradicts the orthogonality
between x and the ¢, W

Corollary A.6.4.1 If A is a non-singular symmetric matrix, then for
any integer n,

A" =diag(A}) and A"=TA"T", (A.6.12)
If all the eigenvalues of A are positive then we can define the rational
powers

A" =TA"T', where A" =diag(A]"), (A.6.13)

for integers s >0 and r. If some of the eigenvalues of A are zero, then
(A.6.12) and (A.6.13) hold if the exponents are restricted to be non-
negative.
Proof Since

Al=(TAI"V =TAT'TAI"'=TAT"
and

A7'=TAT'IY, A7'=diag(A;"),

-



471 APPENDIX A MATRIX ALGEBRA

we see that (A.6.12) can be easily proved by induction. To check that
rational powers make sense note that

(A" =TA™”I"...TA"T'=TAT'=A". R

Motivated by (A.6.13), we can define powers of A for real-valued

exponents.
Important special cases of (A.6.13) are
AVR=TA"T", A" =diag (A} (A.6.14)
when A;=0 for all i and
A" =TAVT, AP =diag (A, ") (A.6.15)

when A; >0 for all i. The decomposition (A.6.14) is called the symmetric
square root decomposition of A.

Corollary A.6.4.2 The rank of A equals the number of non-zero eigen-
values.

Proof By (A.4.2f), r(A)=r(A), whose rank is easily seen to equal the
number of non-zero diagonal elements. W

Remarks (1) Theorem A.6.4 shows that a symmetric matrix A is
uniquely determined by its eigenvalues and eigenvectors, or more specifi-
cally by its distinct eigenvalues and corresponding eigenspaces.

(2) Since A'? has the same eigenvectors as A and has eigenvalues
which are given functions of the eigenvalues of A, we see that the
symmetric square root is uniquely defined.

(3) If the A; are all distinct and written in decreasing order say, then I'
is uniquely determined, up to the signs of its columns,

(4) If A,y = ... =A, =0 then (A.6.10) can be written more compactly
as

k
A=T AT = E Ay
i=1
“"l'l'El'e A] =diag {}-.], -y Ak} al'ld rt =(‘T{“,.| o ‘T’“tb)‘
(5) A symmetric matrix A has rank 1 if and only if
A=xx
for some x. Then the only non-zero eigenvalue of A is given by
trA=trxx'=x'x

and the corresponding eigenspace is generated by x.
(6) Since J=11' has rank 1 with eigenvalue p and corresponding
eigenvector 1, we see that the equicorrelation matrix E=(1—p)l+ p¥ has
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eigenvalues A, =1+(p—1)p and A,= ... =A,=1—p, and the same
eigenvectors as J. For the eigenvectors vy, .. ..v,, We can select any
standardized set of vectors orthogonal 1o 1 and each other. A possible
choice for T is the Helmert matrix of Section A.3.1. Multiplying the
eigenvalues together yields the formula for [E| given in (A.3.2c).

(7) If A is symmetric and idempotent (that is, A =A" and A>=A), then
A; =0 or 1 for all i, because A = A? implies A = A>.

(8) If A is symmetric and idempotent then r(A)=tr A. This result
follows easily from (A.6.6) and Corollary A.6.4.2.

(9} As an example, consider

A= (1 "). (A.6.16)
p 1
The eigenvalues of A from (A.6.1) are the solutions of

1—A p l
=0
‘ p: 11—k F
namely, A, =1+p and A,=1—p. Thus,
A=diag(1+p, 1—p). (A6.17)

For p#0, the eigenvector corresponding to A, = 1+p from (A.6.2) is

(b DE)=a+e(y)

which leads to x, = x;, therefore the first standardized eigenvector is

NG
()

Similarly, the eigenvector corresponding to A,=1-p is

Yea = (_ :j:g)

Hence,

b (w’i 1;&) I AL

182 =12/
If p=0 then A=1 and any orthonormal basis will do.

(10) Formula (A.6.14) suggests a method for calculating the symmetric
square root of a matrix. For example, for the matrix in (A.6.16) with
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p*< 1, we find on using A and I'" from (A.6.11) and (A.6.14) that

J‘*.l."l i I‘Al.le- = (ﬂ b)
b al’

where
2& =|:1 +p]1;2+[1_p)u1. sz(l‘i‘P}Uz_{l—p}uzi

*(11) The following methods are commonly used to calculate eigen-
values and eigenvectors on computers. For symmetric matrices, the
Householder reduction to tri-diagonal form (i.e. a; =0, for i=j+2 and
i<j—2) is used followed by the QL algorithm. For non-symmetric
matrices, reduction to upper Hessenberg form (i.e. a; =0 for i=j+2) is
used followed by the QR algorithm.

(12) For general matrices A (n % p), we can use the spectral decomposi-
tion theorem to derive the following result.

Theorem A.6.5 (Singular value decomposition theorem) If A is an
(n x p) matrix of rank r, then A can be written as

A=ULV (A.6.19)

where Ulnxr) and Vipxr) are column orthonormal matrices (UU=
V'¥V=1) and L is a diagonal matrix with positive elements.

Proof Since A'A is a symmetric matrix which also has rank r, we can use
the spectral decomposition theorem to write

A'A=VAY', (A.6.20)

where V(pxr) is a column orthonormal matrix of eigenvectors of A’A
and A =diag (A, ..., \,) contains the non-zero eigenvalues. Note that all
the A; are positive because A, =v/,,A'Av;,=[|Av,[F>0. Let

L =437, ) g (A.6.21)
and set L=diag(l,,..., ). Define U(n xr) by
wp=0"Av, i=1...,r (A.6.22)

Then
ulu = 1 A A, = AT VGG = {1' =3
(7™ ) LI L ! (1} itl Fj TG ﬂ, i# ,
Thus U is also a column orthonormal matrix.
Any p-vector x can be written as x=Y a,v;,+y where ye N(A), the
null space of A. Note that N(A)= N(A'A) is the eigenspace of A'A for
the eigenvalue 0, so that y is orthogonal to the eigenvectors v, Let e
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denote the r-vector with 1 in the ith place and 0 elsewhere. Then
ULV'x= ) a,ULe, +0
> Z a;lug,+0
= Z o Av, +AY = Ax.
Since this formula holds for all x it follows that ULV =A., W

Note that the columns of U are eigenvectors of AA' and the columns of
V are eigenvectors of A'A. Also, from Theorem A.6.2, the eigenvalues of
AA' and A'A are the same.

A.7 Quadratic Forms and Definiteness

Definition A quadratic form in the vector x is a function of the form

Q(x)=x'Ax= ), i a;%;X;, (AT.1)

i=1j=1
where A is a symmeiric matrix; that is,
Qix)=ay, X+ ... +axi+2a,x, %+ ... +2a,_4.%,_1X,.
Clearly, Q(0)=0.

Definition (1) Q(x) is called a positive definite (p.d.) quadratic form if
Q(x)>0 for all x#0.

(2) Q(x) is called a positive semi-definite (p.s.d) quadratic form if
Qix)=0 for all x#0.

(3) A symmetric marrix A is called p.d. (p.s.d) if Q(x) is p.d. (p.s.d.)
and we write A>0 or A =0 for A poesitive definite or positive semi-definite,
respectively.

Negative definite and negative semi-definite quadratic forms are similarly
defined.

For p=2, Q(x)=xi+x3 is p.d. while Q(x)=(x,—x,)° is p.s.d.

Canonical form Any quadratic form can be converted into a weighted

sum of squares without cross-product terms with the help of the following
theorem.

Theorem A.7.1 For uny symmetric matrix A, there exists an orthogonal
transformation

¥y=I"x (A.7.2)
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such that

YAx=Y Ay (A.7.3)
Proof Consider the spectral decomposition given in Theorem A.6.4.
A =TAT". (A.7.4)

From (A.7.2),
YAx=yT'ATy=yTTAI'Ty=¥'Ay.
Hence (A.7.3) follows. W

It is important to recall that T has as its columns the eigenvectors of A
and that A, ..., A, are the eigenvalues of A. Using this theorem, we can
deduce the following results for a matrix A >0,

Theorem A.7.2 If A>0 then A, >0 for i=1,....p. If A=0. then
A =0,

Proof If A >0, we have, for all x#0,
O<xAx=Ayi+ ... +A¥,.

From (A.7.2), x#0 implies y#0. Choosing y,=1, v,= ... =y,=0, we
deduce that A,>0. Similarly A, >0 for all i. If A=0 the above ine-
qualities are weak. W

Corollary A.7.2.1 If A>0, then A is non-singular and [A|>0.
Proof Use the determinant of (A.7.4) with A,>0. W
Corollary A.7.2.2 If A>0, then A '>0.
Proof From (A.7.3), we have
XA 'x=2 yi/A. W (A.7.5)

Corollary A.7.2.3 (Symmetric decomposition) Any matrix A=0 can
be written as
A=B, (A.7.6)

where B is a symmelric matrix.
Proof Take B=TA'"’I"in (A.7.4). W

Theorem A.7.3 If A=0 is a (pxp) matrix, then for any (pxn) matrix
C, C'AC=0. If A>0 and C is non-singular (so p=n), then C'AC>0.

Proof If A=0 then for any n-vector x#0,
x'C'ACx=(CxYA(Cx)=0, so C'AC=0.




MULTIVARIATE ANALYSIS 476

If A> (0 and C is non-singular, the Cx# 0, so (Cx)'A(Cx) >0, and hence
CAC>0. B

Corollary A.7.3.1 If A=0 and B> 0 are (p X p) matrices, then all of the
non-zero eigenvalues of B™'A are positive.

Proof Since B>(0, B~ exists and, by Theorem A.6.2, B~ AB'7?,
B 'A, and AB ' have the same eigenvalues. By Theorem A.7.3,
B '?AB '*=0, so all of the non-zero eigenvalues are positive. W

Remarks (1) There are other forms of interest:

(a) Linear form. a'x=a,x,+ ... +a,x,. Generally called a linear com-
bination.
(b) Bilinear form. xX' Ay =YY a;xy;.

(2) We have noted in Corollary A.7.2.1 that |A|>0 for A >0. In fact,
|A,;l> 0 for all partitions of A. The proof follows on considering x’ Ax >0

for all x with x,,,= ... =x,=10. The converse is also true.
(3) For
1 2
2=( 'ﬂl)+ pi<l
p 1

the transformation (A.7.2) is given by (A.6.18),
Y1=(X1+IZJIV{§, }’2:[11'1'2”‘-‘5-
Thus, from (A.7.3) and (A.7.5),
xEx=x7+2px,x; +x3=(1+p)yi +{1—p)y3,

y?+r§

- 1
x 1x=—[x§—2px,xg+x§]=l+p —

(1-p%)

A geometrical interpretation of these results will be found in Section
A10.4.
(4) Note that the centring matrix H=0 because ¥Hx =1} (x, —x)*=0.
(5) For any matrix A, AA'=0 and A'A=0. Further, r(AA")=
r(A'A)=r(A).

*A.8 Generalized Inverse

We now consider a method of defining an inverse for any matrix.

Definition For a matrix A(nx<p), A~ is called a g-inverse (generalized
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.n h I
inverse) of A if AKX A=A, (A.8.1)

A generalized inverse always exists although in general it is not unique. W

Methods of construction
(1) Using the singular value decomposition theorem, (Theorem A.6.5)
for A(nxp), write A =ULY'. Then it is easily checked that

A =VL'U (A.8.2)
defines a g-inverse.

(2) If r(A)=r, re-arrange the rows and columns of A(nxp) and
partition A so that A,, is an (rxr) non-singular matrix. Then it can be

verified that
__JAT ﬂ‘)
= AR,
A ( 0 0 (A.8.3)

18 2 g-InVerse.
The result follows on noting that there exist B and C such that

A12=ﬂ113, Az].:C Au and ﬂ21=c ﬂuB.
(3} If A(pxp) is non-singular then A~ =A""' is uniquely defined.
(4) If A(px=p) is symmetric of rank r, then, using Remark 4 after
Theorem A.6.4, A can be written as A =" A,I'}, where T, is a column
orthonormal matrix of eigenvectors corresponding to the non-zero eigen-

values A, =diag (A,,.... A ) of A. Then it is easily checked that
A =T,A;'T} (A.8.4)
is a g-inverse.
Applications
(1) Linear equations. A particular solution of the consistent equations
Ax=bh, (A.B.5)
is :
x=Ab. {A.8.6)

Proof From (A.8.1),
AA Ax=Ax=> AAb)=h
which when compared with (A.8.5) leads to (A.8.6). W
It can be shown that a general solution of a consistent equation is
x=A b+(1-Glz,

where z is arbitrary and G= A" A. For b=0, a general solution is (- Glz.
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(2) Quadratic forms. Let A(p X p) be a symmetric matrix of rank r<p,
Then there exists an orthogonal transformation such that for x restricted
to M(A) the subspace spanned by the columns of A, x’A x can be written
as

XAx= 2 u/A, (A.8.7)

where A,,...,A, are the non-zero eigenvalues of A,

Proof First note that if x lies in M(A) we can write x=Ay for some y,
so that

XA x=YAA Ay=YyAy
does not depend upon the particular g-inverse chosen. From the spectral
decomposition of A we see that M{A) is spanned by the eigenvectors of
A corresponding to non-zero eigenvalues, say by (v ..., v =T

Then if xe M(A), it can be written as x=I",u for some r-vector m.
Defining A~ by (A.8.4), we see that (A.8.7) follows.

Remarks (1) For the equicorrelation matrix E, if 1+(p—1)p=0, then
(1—p) 'lis a g-inverse of E.
(2) Under the following conditions A~ is defined uniquely:
AA A=A, AA~ and A" A symmetric, ATAA =AT,

*(3) For A=0, A~ is normally computed by using Cholesky decompos-
ition (see Remark 4, Section A.2.4.).

A9 Matrix Differentiation and Maximization Problems

Let us define the derivative of f(X) with respect to X(n X p) as the matrix

3f(X) _ (aﬂx:-)‘

aX ax;

We have the following results:

M %_;,_ (A.9.1)
ax'x . ox'Ax ny OXAY _
(IT) N 2x, i (A+ AKX, = Ay. (A.9.2)

|
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d | X
(TIT) #: X; if all elements of X(n % n) are distinct

= { 2}; ::;] if X is symmetric, (A.9.3)
where X, is the (i, j)th cofactor of X.
]
(V) t;i,“ —Y' if all elements of X(n x p) are distinct,
=Y +Y —Diag (Y) if X(n>n) is symmetric. (A.9.4)
ax-!
(V) %=—X"J”x" if all elements of X(n x n) are distinct
i
—lelix-t. i:j.lq} . . &
= s tric,
[—X‘(J;,--*-JJ.)X", i#] if X is symmetric
(A.9.5)
where J; denotes a matrix with a | in the (i, j)th place and zeros
elsewhere.

We now consider some applications of these results to some stationary
value problems.

Theorem A.9.1 The vector x which minimizes
fix)=(y—Ax)(y— Ax)
is given by
A'Ax=Aly. (A.9.6)

Proof Differentiate f(x) and set the derivative equal to 0. Note that the
second derivative matrix 2A'A =0 so that the solution to (A.9.6) will give
a minimum, Also note that from (A.4.3e), (A.9.6) is a consistent set of
equations. M

Theorem A.9.2 Let A and B be two symmetric matrices. Suppose that
B >10). Then the maximum {(minimum) of x'Ax given

xBx=1 (A.9.7)

is attained when x is the eigenvector of B~'A corresponding to the largest
(smallest) eigenvalue of B™'A. Thus if A, and A, are the largest and
smallest eigenvalues of B 'A, then, subject to the constraint (A.9.7),

max X Ax=A,, min X' Ax= A,. (A9.8)

x

Proof Let B'7 denote the symmetric square root of B, and let y =B'"x.
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Then the maximum of x’Ax subject to (A.9.7) can be written as
max yB "?AB "%y subjectto y'y=1. (A.9.9)
¥
Let B"'?AB ">=TAI" be a spectral decomposition of the symmetric

matrix B"'?AB "%, Let z=T"y. Then zz=yTT'y=y¥'y so that (A.9.9)
can be written

max z' AZ = max z Az; subjectto z'z=1. (AL9.10)

If the eigenvalues are written in descending order then (A.9.10) satisfies
max ), A;zZ<A,;max ), z2=A,.

Further this bound is attained forz=(1, 0,...,0), that is for y =+,,,, and
for x=B "y, By Theorem A.6.2, B 'A and B "'*AB ' have the
same eigenvalues and x =By, is an eigenvector of B 'A correspond-
ing to A,. Thus the theorem is proved for maximization.

The same technique can be applied to prove the minimization
result. W

Corollary A.9.2.1 [f R(x)=x'Ax/x'Bx then, for x#0,
A, <R(x)<A,. (A.9.11)

Proof Since R(x) is invariant under changes of scale of x, we can regard
the problem as maximizing (minimizing) x'Ax given (A.9.7). W

Corollary A.9.2.2 The maximum of &'x subject to (A.9.7) is
(aB '), (A.9.12)
Further
max {(a'x)*/(x'Bx)}=a'B 'a (A.9.13)

and the maximum is attained at x=B 'a/(a’B 'a)"/%.
Proof Apply Theorem A.9.2 with ¥YAx=(a'x)’=x'(aa’)x. W

Remarks (I) A direct method is sometimes instructive. Consider the
problem of maximizing the squared distance from the origin

of a point (x, y) on the ellipse

=1. (A.9.14)
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When y? is eliminated, the problem reduces to finding the maximum of
x4+ b3(x*a’-1), xe[—a, al.

Setting the derivative equal to 0 yields the stationary point x =0 which,
from (A.9.14), gives y = =h. Also, at the endpoints of the interval (x = xa),
we get y=0. Hence

max (x*+y?) =max (a*, b?).

This solution is not as elegant as the proof of Theorem A.9.2, and does
not generalize neatly to more complicated quadratic forms.
(2) The results (A.9.1)-{A.9.2) follow by direct substitution, e.g.

il’::=i(a:;uc4 +a,x)=a
ﬂxl a.r] e R anxp '
proves (A.9.1). For (A.9.3) use (A.2.3d).

A.10 Geometrical Ideas

A.10.1 n-dimensional geometry

Let ¢, denote the vector in R™ with 1 in the ith place and zeros elsewhere
so that (e,,...,e,) forms an orthonormal basis of R". In terms of this
basis, vectors x can be represented as x=) x.e, and x; is called the ith
coordinate axis. A point & in R" is represented in terms of these
coordinates by x, =a,, ..., x, = a,. The point & can also be interpreted as
a directed line segment from 0 to . Some generalizations of various basic
concepts of two- and three-dimensional analytic Euclidean geometry are
summarized in Table A.10.1.

A.10.2 Orthogonal transformations

Let I' be an orthogonal matrix. Then I'e, =~y;,, i=1, ..., n, also form an
orthonormal basis and points x can be represented in terms of this new
basis as

X= z Xie = Z Yi¥iins

where y, =+/;,x are new coordinates. If x'" and x'* are two points with
new coordinates y''" and y'* note that

(Y{ 0n__ FI'ZJ‘]J':!,I 1 _Stll) — (xﬂ'l _,l!!]irrf(xﬂ}_ ll]]

= (xﬂ] _I{Zi]il]t 1 __ 1{21}‘

M




MULTIVARIATE ANALYSIS

482

Table A.10.1 Basic concepts in n-dimensional geometry

Concept

Description (llﬁ:]i= (E xf)m)

Point &
Distance between a and b

Line passing through a, b

Line passing through 0, a

Angle between lines from
DOtomand 0 to b

Direction cosine vector of a line
from 0 to a

Plane P

Plane through by, ..., b,

Plane through 0, by, ..., by

Hypersphere with centre a
and radius r
Ellipsoid

Xy =By oy Xy =0y

n--bi|={2tai—ba=}m

x=Aa+(1—-A)b is the equation
Xx=Aa

8 where cos 8 =a'b/{/al |b}'~, O=<=6=<n
(c0s ¥, . .., €05 ¥, ), cos v, = aflal;

v, =angle between line and ith axis
a'x=c¢ is general equation

x=Y Ab, YA=1
:=Zl.h.

(x—a)(x—a)=r"
(x—a)A (x—a)=c’, A>0

so that orthogonal transformations preserve distances., An orthogonal
transformation represents a rotation of the coordinate axes (plus a
reflection if [I|=—1). When n =2 and [I'|=1, T can be represented as

(cos # —sin ﬂ)
sin @ cos @

and represents a rotation of the coordinate axes counterclockwise through
an angle 8.

A.10.3 Projections

Consider a point a, in n dimensions (see Figure A.10.1). Its projection
onto a plane P (or onto a line) through the origin is the point & at the foot
of the perpendicular from a to P. The vector & is called the orthogonal
projection of the vector a onto the plane.

Let the plane P pass through points 0, by, ...,b, so that its equation
from Table A.10.1 is

x= 9 Ab;,
Suppose rank (B) = k so that the plane is a k-dimensional subspace. The

B=(by,....b).
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/
L,

a>

Figure A.10.1 @ is the projection of a onto the plane P.

point @ is defined by x= 2. A;b;, where X,, ..., A, minimize
a—y. :\Jb.“

since & is the point on the plane closest to a. Using Theorem A.9.1, we
deduce the following result.

Theorem A.10.1 The point & is given by
i=B(B'B) 'B'a. B (A.10.3a)

Note that B(B'B) 'B' is a symmetric idempotent matrix. In fact, any
symmetric idempotent matrix can be used to represent a projection.

A10.4 Ellipsoids
Let A be a p.d. matrix. Then
(x—a)A ' (x—a)=c® 4 (A.10.4a)
represents an ellipsoid in n dimensions. We note that the centre of the
ellipsoid is at x =o.. On shifting the centre to x=0, the equation becomes
XA 'x=c% (A.10.4b)

Definition Let x be a point on the ellipsoid defined by (A.10.4a) and let
fix)=|lx— ]’ denote the squared distance between o and x. A line through
o and x for which x is a stationary point of f(x) is called a principal axis of
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the ellipsoid. The distance |x—el| is called the length of the principal
Semi-axis.

Theorem A.10.2 Let A,,..., A, be the eigenvalues of A satisfying A, >
A;> ... >\, Suppose that ~,, ..., Yy, are the corresponding eigenvec-
tors. For the ellipsoids (A.10.4a) and (A.10.4b), we have

(1) The direction cosine vector of the ith principal axis is »,,.
(2) The length of the ith principal semi-axis is cA 2,

Proof It is sufficient to prove the result for (A.10.4b). The problem
reduces to finding the stationary points of f(x)=x'x subject to x lying on
the ellipsoid X A~"x= c*. The derivative of x’A 'x is 2A "'x. Thus a point
¥ represents a direction tangent to the ellipsoid at x if 2y'A 'x=0.

The derivative of f(x) is 2x so the directional derivative of f(x) in the
direction y is 2y'x. Then x is a stationary point if and only if for all points
¥y representing tangent directions to the ellipsoid at x, we have 2y'x=0;
that is if

YA ' x=0>yx=0.

This condition is satisfied if and only if A~ 'x is proportional to x; that is if
and only if x is an eigenvector of A™".

2
h

Ya=yan

¥izyr'n

n

Figure A.10.2 Ellipsoid x'A"'x=1. Lines defined by y, and vy, are the first
and second principal axes, [all= X", b= K",
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Setting x= By, in (A.10.4b) gives /A, =c?, so B =A% Thus, the
theorem is proved. W

If we rotate the coordinate axes with the transformation y=1"x, we
find that (A.10.4b) reduces to

Z yild =c*
Figure A.10.2 gives a pictorial representation.
With A =1, (A.10.4b) reduces to a hypersphere with A, = ... =A, =1

so that the As are mot distinct and the above theorem fails; that is, the
position of v, i=1,...,n, through the sphere is not unique and any
rotation will suffice; that is, all the n components are isometric.

In general, if A, =A,,, the section of the ellipsoid is circular in the
plane generated by ~y;, yi+1). Although we can construct two perpendicu-
lar axes for the common root, their position through the circle is not
unique. If A equals the equicorrelation matrix, there are p—1 isotropic
principal axes corresponding to the last p—1 eigenvalues,

T1




