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We assume Y1, . . . ,Yn ∼ Np(µ,Σ) with Σ positive definite. Write V = nΣ̂, where (Ȳ, Σ̂) is the (unrestricted)
MLE for the multivariate normal distribution.

Sphericity means the different components of Y are uncorrelated and have the same variance. In other
words, we are looking at the following null hypothesis:

H0 : Σ = σ2Ip, σ2 > 0.

Likelihood Ratio Test
We have

L(Ŷ, σ2Ip) = (2π)−np/2|σ2Ip|−n/2 exp
(
−1

2tr((σ2Ip)−1V )
)

= (2πσ2)−np/2 exp
(
− 1

2σ2 tr(V )
)
.

Taking the derivative of the logarithm and setting it equal to zero, we find that L(Ŷ, σ2Ip) is maximised
when

σ̂2 = trV
np

.

We then get

L(Ŷ, σ̂2Ip) = (2πσ̂2)−np/2 exp
(
− 1

2σ̂2
tr(V )

)
= (2π)−np/2

(
trV
np

)−np/2
exp

(
−np2

)
.

Therefore, we have

Λ =
(2π)−np/2

(
trV
np

)−np/2
exp

(
−np2

)
exp(−np/2)(2π)−np/2|Σ̂|−n/2

=

(
trV
np

)−np/2

|n−1V |−n/2

=
(

|V |
(trV/p)p

)n/2
.
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We can also rewrite this as follows: let l1 ≥ · · · ≥ lp be the eigenvalues of V . We have

Λ2/n = |V |
(trV/p)p

=
∏p
j=1 lj

( 1
p

∑p
j=1 lj)p

=
(∏p

j=1 l
1/p
j

1
p

∑p
j=1 lj

)p
.

In other words, the modified LRT Λ̃ = Λ2/n is the ratio of the geometric to the arithmetic mean of the
eigenvalues of V (all raised to the power p).

Note that under H0, there is only one free parameter, namely σ2. Therefore the aymptotic theory of likelihood
ratio tests implies that

−2 log Λ→ χ2
(

1
2p(p+ 1)− 1

)
.

We will provide a better approximation using asymptotic expansions.

First, we need to compute the moments of Λ. We start with the following lemma:

Lemma

Under the null hypothesis, the random variables trV and detV
(trV )p are independent.

Proof

Recall that V ∼ Wp(n − 1, σ2Ip), and so its distribution only depends on σ2. Hence, the distribution of
detV

(trV )p does not depend on σ2, and therefore it is an ancillary statistic.

Now, given that σ̂2 = trV
np and given that the multivariate normal forms an exponential family, we know that

(Ȳ, trV ) is a minimal sufficient and complete statistic. Therefore, we can conclude by using Basu’s theorem.

Now, going back to Λ̃, note that we have

Λ̃
(

1
p

trV
)p

= |V |.

Using our lemma above, for any h, we can write

E|V |h = E

(
Λ̃
(

1
p

trV
)p)h

= EΛ̃hE
(

1
p

trV
)ph

.

In other words, we have

E
(
Λ̃h
)

=
E
(
|V |h

)
E

((
1
p trV

)ph) .
Recall the following two results:

1. If W ∼Wp(m, Ip), then trW ∼ χ2(mp).
2. If W ∼Wp(m,Σ), then |W | ∼ |Σ|

∏p
j=1 χ

2(m− p+ j).

Therefore, we can get all the moments of Λ̃ from the moments of chi-squared distributions.
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Proposition

Let X ∼ χ2(d). Then for h > − 1
2d, we have

E(Xh) = 2h
Γ
( 1

2d+ h
)

Γ
( 1

2d
) .

Putting all this together, we get the following theorem:

Theorem

The moments of the modified LRT statistic are given by

E
(
Λ̃h
)

= pph
Γ
( 1

2 (n− 1)p
)

Γ
( 1

2 (n− 1)p+ ph
) Γp

( 1
2 (n− 1) + h

)
Γp
( 1

2 (n− 1)
) .

Proof

This follows from our discussion above, the moments of the chi-squared distribution, and the fact that
V ∼ σ2Wp(n− 1).

Asymptotic expansion
For this section, we are following Chapter 12 of Bilodeau & Brenner. In a 1949 Biometrika paper, George
Box studied the distribution theory of a very general class of likelihood ratio tests. It can be applied any
time the moments of the likelihood ratio Λ (or some power W = Λd thereof) have the following expression:

E
(
Wh

)
= K

(∏b
j=1 y

yj

j∏a
k=1 x

xk

k

)h ∏a
k=1 Γ (xk(1 + h) + ζk)∏b
j=1 Γ (yj(1 + h) + ηj)

, (1)

such that
b∑
j=1

yj =
a∑
k=1

xk

and K is a constant such that E
(
Λ̃0) = 1.

In the context of the test for sphericity, we can take W = Λm/n with m = n− 1, and we get

E
(
Wh

)
= E

(
Λmh/n

)
= E

(
Λ̃mh/2

)
= ppmh/2 Γ

( 1
2mp

)
Γ
( 1

2mp+ 1
2pmh

) Γp
( 1

2m+ 1
2mh

)
Γp
( 1

2m
)

=
(

Γ
( 1

2mp
)

Γp
( 1

2m
)) ppmh/2 Γp

( 1
2m(1 + h)

)
Γ
( 1

2mp(1 + h)
)

=
(
πp(p−1)/4 Γ

( 1
2mp

)
Γp
( 1

2m
))(ppm/2

)h ∏p
k=1 Γp

( 1
2m(1 + h)− 1

2 (k − 1)
)

Γ
( 1

2mp(1 + h)
) .

This is consistent with the general form above, if we take

a = p, xk = 1
2m, ζk = − 1

2 (k − 1),
b = 1, y1 = 1

2mp, η1 = 0,
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and
K = πp(p−1)/4 Γ

( 1
2mp

)
Γp
( 1

2m
) .

Going back to Equation 1, let M = −2 logW . For a real number 0 < ρ ≤ 1, we can look at the characteristic
function of ρM :

ϕρM (t) = E(exp(itρM))
= E

(
W−2itρ)

= K

(∏b
j=1 y

yj

j∏a
k=1 x

xk

k

)−2itρ ∏a
k=1 Γ (xk(1− 2itρ) + ζk)∏b
j=1 Γ (yj(1− 2itρ) + ηj)

.

Taking the logarithm of the characteristic function gives us the cumulant function:

KρM (t) = logϕρM (t)

= logK − 2itρ

 b∑
j=1

yj log yj −
a∑
k=1

xk log xk


+

a∑
k=1

log Γ (xk(1− 2itρ) + ζk)−
b∑
j=1

log Γ (yj(1− 2itρ) + ηj) .

If we set βk = (1− ρ)xk and εj = (1− ρ)yj , we can write

KρM (t) = g(t)− g(0),

where

g(t) = 2itρ

 a∑
k=1

xk log xk −
b∑
j=1

yj log yj


+

a∑
k=1

log Γ (ρxk(1− 2it) + βk + ζk)−
b∑
j=1

log Γ (ρyj(1− 2it) + εj + ηj) .

Next, we can approximate the cumulant function by using the following asymptotic expansion of the log-gamma
function: for h bounded and |z| → ∞, we have

log Γ(z + h) = log
√

2π +
(
z + h− 1

2

)
log z − z

−
l∑

α=1

Bα+1(h)
α(α+ 1)z

−α +O(z−(l+1)),

where Br(h) are Bernoulli polynomials. We can cnotrol the accuracy of our approximation by choosing l
appropriately.

Using this expansion with the function g, we get

KρM (t) = −1
2f log(1− 2it) +

l∑
α=1

ωα((1− 2it)−α − 1) +O(n−(l+1)),
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where

f = −2

 a∑
k=1

ζk −
b∑
j=1

ηj −
1
2(a− b)

 ,

and

ωα = (−1)α+1

α(α+ 1)

 a∑
k=1

Bα+1(βk + ζk)
(ρxk)α −

b∑
j=1

Bα+1(εj + ηj)
(ρyj)α

 .

Two important observations:

1. βk and εj are O(1);
2. If xk and yj are O(n), then ωα is O(n−α).

Now, we have an approximation of the cumulant function, which can be converted to an approximation of
the characteristic function through exponentiation:

ϕρM (t) = exp(KρM (t))

= exp
(
−1

2f log(1− 2it) +
l∑

α=1
ωα((1− 2it)−α − 1) +O(n−(l+1))

)

= (1− 2it)−f/2
l∏

α=1
exp

(
ωα((1− 2it)−α − 1)

)
·O(1 + n−(l+1))

= (1− 2it)−f/2
l∏

α=1
exp

(
ωα(1− 2it)−α

) l∏
α=1

exp (−ωα) +O(n−(l+1))

= (1− 2it)−f/2
l∏

α=1

∞∑
k=0

ωkα
k! (1− 2it)−αk

l∏
α=1

∞∑
k=0

(−1)k ω
k
α

k! +O(n−(l+1)).

We can then get an approximation of order l+ 1 by computing terms of order up to l in the Taylor expansions.
For example, if we want an approximation of order 2, we compute all linear terms:

ϕρM (t) = (1− 2it)−f/2 (1 + ω1(1− 2it)−1) (1− ω1) +O(n−2)

= (1− 2it)−f/2 + ω1

(
(1− 2it)−(f+2)/2 − (1− 2it)−f/2

)
+O(n−2)

= ϕf (t) + ω1(ϕf+2(t)− ϕf (t)) +O(n−2),

where ϕf (t) is the characteristic function of a chi-square on f degrees of freedom. By the inversion formula,
we have that the density of ρM is

χ2(f) + ω1(χ2(f + 2)− χ2(f)) +O(n−2).

Remember that we let ρ be arbitrary; it turns out that we can choose ρ so that ω1 = 0:

ρ = 1− f−1

 a∑
k=1

x−1
k (ζ2

k − ζk + 1
6)−

b∑
j=1

y−1
j (η2

j − ηj + 1
6)

 . (2)

We have essentially proven (minus some technical details) the following approximation result:
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Theorem (Order 2 approximation)

If W has moments as in Equation 1, where xk and yj are O(1), then with the choice of ρ as in Equation 2,
we have

P (ρM ≤ x) = Fχ2(x; f) +O(n−2),

where Fχ2(x; f) = P (χ2(f) ≤ x).

Note that this is still a chi-square approximation, just as in the general asymptotice theory of likelihood ratio
tests. However, this approximation is generally much better. Moreover, we can make the approximation even
more precise by computing more terms in the Taylor expansion. Finally, it is possible to use bootstrap to
increase the accuracy in the Theorem above to O(n−3) (see Chapter 14 of Bilodeau & Brenner).

Now, going back to the test of sphericity, we need to compute f and ρ:

f = 1
2(p+ 2)(p− 1),

ρ = 1− 2p2 + p+ 2
6p(n− 1) .

In other words, if we let Λ be the likelihood ratio for the test of sphericity, we have

−2
(

6p(n− 1)− (2p2 + p+ 2)
6pn

)
log Λ ≈ χ2

(
1
2p(p+ 1)− 1

)
.

Compared to the general theory, we are multiplying −2 log Λ by a constant and correcting the degrees of
freedom. This is known as a Bartlett correction.

Simulation
We will compare the two approximations using a short simulation study. We will let n = 10, p = 2 and
σ2 = 1.
set.seed(7200)

# Simulation parameters
n <- 10
p <- 2
B <- 1000

# Generate data
lrt_dist <- replicate(B, {

Y <- matrix(rnorm(n*p), ncol = p)
V <- crossprod(Y)

# log Lambda
0.5*n*(log(det(V)) - p*log(mean(diag(V))))

})

First, we will look at the general asymptotic theory:
df <- choose(p + 1, 2)
general_chisq <- rchisq(B, df = df)

Next, we will look at Bartlett’s correction:
df <- choose(p + 1, 2) - 1
const <- (6*p*(n-1) - (2*pˆ2 + p + 2))/(6*p*n)
bartlett_chisq <- rchisq(B, df = df)/const
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We can compare them using the empirical CDF :
plot(ecdf(-2*lrt_dist), main = "-2 log Lambda")
lines(ecdf(general_chisq), col = 'blue')
lines(ecdf(bartlett_chisq), col = 'red')
legend('bottomright', legend = c("-2log Lambda", "General approx.", "Bartlett"),

lty = 1, col = c('black', 'blue', 'red'))
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