Web APIs

Max Turgeon

SCI 2000-Introduction to Data Science

Lecture Objectives

- Access APIs from R
- Learn basics of JSON
- Compare and contrast web scraping and APls

- Last week, we talked a bit about the ethics of web scraping.
- It uses server resources, so we have to be respectful.
- Some web sites provide a way to interact with their data using
APIs.
- APIs provide a documented way of accessing data, and web

sites can control access.

Main definitions

- API: Application Programming Interface
- Allows us to interact with a web application using a
programming language.
- REST: Representational State Transfer

- Resources are referenced via URLs and their representations
(i.e. data) is transferred via an HTTP request

- An API following the REST standard is called a RESTful API.

Why would a website provide an API?

API provider
(e.g., Twitter, Yahoo!) APl user

Web application [User application]

N O P
: REST, SOAP,.. . i

Web service / Data API D . | User software (e.g., R)

: Data formats: H :

\ J JSUI\:, XML,..’. [i

API wrapper software

Automated Data Collection in R

- Advantages
- Documentation on how to access data
- Structured data
- Respectful of server-side resources

- Disadvantages

- May not include the data you want/need
- Not always free

- Colorado has a lot of data available:
https://data.colorado.gov

- We will focus on their population projections:
https://data.colorado.gov/Demographics/
Population-Projections-in-Colorado/q5vp-adf3

- Looking at the documentation, we see we can specify the
county.

- Using URL parameters!

https://data.colorado.gov
https://data.colorado.gov/Demographics/Population-Projections-in-Colorado/q5vp-adf3
https://data.colorado.gov/Demographics/Population-Projections-in-Colorado/q5vp-adf3

library(httr)

Base URL path

base_url <- paste@(”https://data.colorado.gov/",
"resource/q5vp-adf3.json?”)

full_url <- pasteO(base_url, "county=Boulder”)

data <- GET(full_url)
status_code(data) # 200 OK

[1] 200

What did we receive?
data$headers$ content-type"

[1] "application/json;charset=utf-8"

- JSON: Javascript Object Notation

- It's a common way to share structured data across the web in
a human-readable format.

- Key: value pairs, grouped using curly braces.

- Main idea: Easy to read and write for both humans and
computers.

- And we have R packages to transform them JSON data into
data.frames

“Id": o,

"FirstMame": “string",
"LastName": "string",
"Name™: "string",
"EmailAaddress": "string",

"TerritoryId”: @

"

Example (cont'd) i

library(tidyverse)
library(jsonlite)

data <- fromJSON(content(data, as = "text”))
is.data.frame(data)

[1] TRUE

names(data)

Example (cont’d) ii

[1] "id” "county” "fipscode” "year”

[5] "age” "malepopulation” "femalepopulation”
"totalpopulation”

[9] "datatype”

- We can also filter the data using URL parameters
- https://dev.socrata.com/docs/queries/

- Note: We need to properly encode the URL first, as it contains
spaces.

https://dev.socrata.com/docs/queries/

Example (cont’d) iii

We can filter the data via the URL

full_url <- pasteO(base_url, "county=Boulder”,
"s$where=age between 20 and 40")

Need to encode to proper URL

full_url <- URLencode(full_url)

Spaces are replaced by %20

str_sub(full _url, 66)

[1] "$where=age%20between%2020%20and%2040"

14

Example (cont’d) iv

data <- GET(full_url)
status_code(data) # 200 OK

[1] 200

data <- fromJSON(content(data, as = "text”))
range(as.numeric(data$age))

[1] 20 40

Exercise

Look at the documentation here:
https://dev.socrata.com/docs/queries/

Build a URL that will select the following three variables: year, age
femalepopulation; and where age is constrained to be between
20 and 40 years old (see previous example).

Use the returned data to plot population projections over time

https://dev.socrata.com/docs/queries/

- Looking at the documentation, we can use
$select=year,age,femalepopulation as an URL
parameter to select the variables we want.

full_url <- paste@(base_url, "county=Boulder”,
"g$where=age between 20 and 40",
"§$select=year,age, femalepopulation”)

full _url <- URLencode(full _url)

data <- GET(full_url)
status_code(data) # 200 OK

[1] 200

data <- fromJSON(content(data, as = "text”))

library(tidyverse)
Mutate variables to numeric
data <- data %>%
mutate(year = as.numeric(year),
age = as.integer(age),
femalepopulation = as.numeric(femalepopulation))

data %>%

ggplot(aes(x = year, y = femalepopulation)) +
geom_line(aes(group = age, colour = age))

19

2
<
o
gt
=)

o
n

4000~

3000~

00000

uonejndodayewa)

2000~

2040

2020

2000

year

20

- We will interact with the Winnipeg Transit API.
- This example is adapted from their web site: https:
//api.winnipegtransit.com/home/api/v3/example
- To access the APl you need to register, and you will receive an
API key.
- We will start by finding the nearby stops
- We need to pass longitude (Lon) and latitude (lat)
coordinates

- We need to pass a radius distance within which to look for
nearby stops.

21

https://api.winnipegtransit.com/home/api/v3/example
https://api.winnipegtransit.com/home/api/v3/example

Retrieve API key from environment variable
token <- Sys.getenv(”"WINNIPEG_TOKEN")

baseurl <- paste@(”https://api.winnipegtransit.com/"”,
"v3/stops.json?”)

full_url <- pasteO(baseurl, "lon=-97.138&lat=49.895§",
"distance=250&", "api-key=", token)

data <- GET(full_url)
status_code(data) # 200 OK

22

Example iii
##t [1] 200
data <- fromJSON(content(data, as = "text”))

names(data)

[1] "stops” "query-time”

glimpse(data$stops)

23

IIHHHHHHHHIHIII

Rows: 21

Columns: 9

$ key <int> 10763, 10762, 10638, 10627, 10761,
10646, 10644, 10637,~

$ name <chr> "Eastbound Portage at Main”,
"Westbound Portage at Main~

$ number <int> 10763, 10762, 10638, 10627,
10761, 10646, 10644, 10637,~

$ direction <chr> "Eastbound”, "Westbound”,
"Southbound”, "Northbound”, "~

$ side <chr> "Farside”, "Nearside”, "Farside
Opposite”, "Nearside”, ~

2%

IIEHHHiHHiII

$ street <df[,4]> <data.frame[21 x 41>

$ “cross-street’ <df[,3]> <data.frame[21 x 3]>
$ centre <df[,2]> <data.frame[21 x 21>

$ distances <df[,1]> <data.frame[21 x 11>

pull(data$stops, name)

Hi
H
H
Hi
H

[1]
[2]
[3]
[4]
[5]

"Eastbound Portage at Main”
"Westbound Portage at Main”
"Southbound Main at Pioneer”
"Northbound Main at Pioneer”
"Westbound Pioneer at Main”

25

IIEH%HHHHiIHiII

[6] "Northbound Fort at Portage”

[7] "Northbound Fort at Graham North”
[8] "Southbound Main at Lombard”

[9] "Eastbound Portage at Fort”

[10] "Westbound Portage at Westbrook”
[11] "Eastbound William Stephenson at
Westbrook”

[12] "Westbound Notre Dame at Albert”
[13] "Westbound Portage at Garry”

[14] "Southbound Westbrook at wWilliam
Stephenson”

[15] "Northbound Main at McDermot”

26

IIEH%iiHHHiIHIiIII

[16] "Southbound Garry at Portage South”

[17] "Southbound Garry at Portage North”

[18] "Northbound Fort at Graham”

[19] "Eastbound McDermot at Main”

[20] "Eastbound Graham at Fort (Wpg Square)”
[21] "Southbound Main at McDermot”

- Next, we can pull the stop schedules.
- Each stop has a different endpoint.
- E.g. for stop 10541, we query stops/10541

- We also specify the max-results-per-route.

27

IIHHHHHHEiIiiiII

base_url <- paste@(”https://api.winnipegtransit.com/"”,
"v3/stops/10541/schedule.json”)

full_url <- pasteO(base_url,
"?max-results-per-route=2§",
"api-key=", token)

data <- GET(full_url)
status_code(data) # 200 OK

[1] 200

28

IIHHHHHHHHIHIII

data <- fromJSON(content(data, as = "text”))

library(purrr)
data %>%
pluck(”stop-schedule”, "route-schedules”,
"scheduled-stops”, 1, "times”, "arrival”)
#it scheduled estimated

1 2021-04-06T14:51:00 2021-04-06T14:53:53
2 2021-04-06T15:01:00 2021-04-06T15:01:00

29

- Bonus exercise: Transform data into a table with three
columns: Route name, Expected Arrival, and Estimated Arrival.

30

APIs and R packages

- R packages have been created to interact with most common
APlIs:

- rtweet: Collecting Twitter data
- rnoaa: NOAA weather data
- tradestatistics: Open Trade international data

31

- Web sites use APIs to deliver data as needed, and they
sometimes make APIs available to the public.
- APIs often require registration (i.e. using a key) so that they
can keep track of your usage.
- Authentication is sometimes more complex; look at the
documentation.
- Some APIs are not free!
- We should prefer APl over scraping whenever possible, as it is
more respectful of server resources.

32

