
Automation

Max Turgeon

SCI 2000–Introduction to Data Science



Lecture Objectives

• List pros and cons of automating a data analysis
• Run an R script from the command line
• Write a simple Makefile

2



Motivation

• Complex analyses require structure
• You want to be able to explain what you did.

• Time- and resource-consuming analyses should only be
repeated when absolutely necessary.

• Especially if using cloud computing

3



What are we automating?

• We are automating parts of the analysis that generate outputs.
• Data cleaning
• Creating figures
• Modeling results

• We can’t automate everything.
• As the analyst, you still need to make some choices.

4



Why are we automating?

• The main reason for automating is reproducibility.
• Automation requires writing scripts/programs, which serve as
documentation.

• Reduces risk of inaccuracies!
• E.g. The figure you created, did it use the cleaned or
uncleaned data?

• Automated data analyses can typically be run by another
analyst.

5



Pros and Cons

• Advantages
• Increases reproducibility
• Improves collaboration
• Easier to maintain/debug

• Disadvantages
• Requires extra work
• Slows you down (which can be good!)

6



R and the command line

• R scripts can be run from the command line using the
command Rscript.

• E.g. Rscript my_script1.R

• A few things to keep in mind:
• Need to load packages for each script separately.
• Load R code from other scripts using source.
• Need to save the output somewhere.

• Look at demo.

7



Saving outputs

• Saving figures:
• ggsave from ggplot2
• The file extension determines the format.

• Saving data:
• As a csv file using write_csv.
• As binary file using saveRDS.

8



Passing arguments

9



Makefiles

• Note: This works really well on Linux and MacOS. On Windows,
it’s complicated…

• You may need to install Cygwin or PowerShell

• Makefiles are text files that keep track of which scripts
should be run in which order.

• E.g. Want to clean data before running analysis.

• It does so by keeping track of dependencies of certain files
(called targets).

• As an added bonus: if none of the dependencies have
changed, there is no need to update the target.

10



Example i

file_to_create: files.it depends.on like_this.R
python code_to_run.py
Rscript like_this.R

• file_to_create: this is the target, i.e. the file we want to
update if its dependencies change

• Could be a figure, a CSV file, a report, etc.

• files.it, depends.on, like_this.R: these are the
dependencies.

• Could be the raw data, a script with functions, the data
cleaning scripts, etc.

11



Example ii

• python code_to_run.py and Rscript like_this.R are
lines of code that will be run.

12



Makefiles (cont’d)

• A Makefile should always be named Makefile, without
extension.

• To run a makefile, use the command make.
• The Makefile must be in the current directory.

• A rule, i.e. a block of code like in the example, will run if:
• The target is not present already.
• A dependency is newer than the target.

• Very important: Actions must be indented using a tab, not
spaces!

• Makefiles often contain a special target called all. The other
targets are usually dependencies of all.

13



Demo

• We will use the following code repository: https:
//github.com/turgeonmaxime/automation-demo

• Goal: Create a Makefile to automate this analysis.

14

https://github.com/turgeonmaxime/automation-demo
https://github.com/turgeonmaxime/automation-demo


Summary

• Automation improves reproducibility and reduces errors.
• Makefiles are a great way to keep track of dependencies
within your analysis.

• But can be a pain to make it work on Windows…

• If you want an R-specific solution that works on Windows,
have a look at the package targets:
https://books.ropensci.org/targets/

15

https://books.ropensci.org/targets/

