
Filtering Joins

Max Turgeon

SCI 2000–Introduction to Data Science

Lecture Objectives

• Understand the difference between a mutating join and a
filtering join

• Be able to recognize when to use each type
• Be able to transform datasets using set operations

2

Motivation

• In the previous lecture, we talked about mutating joins.
• Create new dataset by combining two datasets with a common
variable

• Today we will talk about filtering joins.
• Filter a dataset based on its relationship with another dataset

• For completeness, we will also talk about set operations that
can be used with relational data.

3

Filtering joins in general

• The starting point is still the same:
• We have two data.frames x and y
• They have a variable in common that allows us to match rows
across

• In filtering joins, we want to filter the rows of x based on their
relationship with the rows of y.

• In particular, the output of a filtering join is a subset of x.

4

Semijoin

• In a semijoin, we only keep the rows of x with a
corresponding match in y

5

Example i

library(tidyverse)

df_beers <- read_csv(”beers.csv”)
df_breweries <- read_csv(”breweries.csv”)

Top 5 states for # breweries
state_top5 <- df_breweries %>%

count(state) %>%
top_n(5)

6

Example ii

state_top5

A tibble: 5 x 2
state n
<chr> <int>
1 CA 39
2 CO 47
3 MI 32
4 OR 29
5 TX 28

7

Example iii

breweries_top5 <- semi_join(df_breweries,
state_top5)

breweries_top5

A tibble: 175 x 4
brewery_id name city state
<dbl> <chr> <chr> <chr>
1 3 Mike Hess Brewing Company San Diego CA
2 4 Fort Point Beer Company San Francisco CA
3 6 Great Divide Brewing Company Denver CO

8

Example iv

4 7 Tapistry Brewing Bridgman MI
5 8 Big Lake Brewing Holland MI
6 9 The Mitten Brewing Company Grand Rapids MI
7 10 Brewery Vivant Grand Rapids MI
8 11 Petoskey Brewing Petoskey MI
9 12 Blackrocks Brewery Marquette MI
10 13 Perrin Brewing Company Comstock Park MI
... with 165 more rows

9

Example v

Only keep beers from these states
semi_join(df_beers,

breweries_top5,
by = ”brewery_id”) %>%

count(style, sort = TRUE)

A tibble: 86 x 2
style n
<chr> <int>
1 American IPA 141
2 American Pale Ale (APA) 90

10

Example vi

3 American Amber / Red Ale 57
4 American Double / Imperial IPA 43
5 American Blonde Ale 38
6 American Pale Wheat Ale 38
7 Saison / Farmhouse Ale 24
8 American Brown Ale 21
9 Cider 21
10 American Stout 20
... with 76 more rows

11

Antijoin

• In an antijoin, we only keep the rows of x without a
corresponding match in y

12

Example i

Let's look at the other states
breweries_nottop5 <- anti_join(df_breweries,

state_top5)

breweries_nottop5

A tibble: 383 x 4
brewery_id name city state
<dbl> <chr> <chr> <chr>
1 0 NorthGate Brewing Minneapolis MN
2 1 Against the Grain Brewery Louisville KY

13

Example ii

3 2 Jack's Abby Craft Lagers Framingham MA
4 5 COAST Brewing Company Charleston SC
5 16 Flat 12 Bierwerks Indianapolis IN
6 17 Tin Man Brewing Company Evansville IN
7 18 Black Acre Brewing Co. Indianapolis IN
8 19 Brew Link Brewing Plainfield IN
9 20 Bare Hands Brewery Granger IN
10 21 Three Pints Brewing Martinsville IN
... with 373 more rows

14

Example iii

Only keep beers from these states
semi_join(df_beers,

breweries_nottop5,
by = ”brewery_id”) %>%

count(style, sort = TRUE)

A tibble: 92 x 2
style n
<chr> <int>
1 American IPA 283
2 American Pale Ale (APA) 155

15

Example iv

3 American Amber / Red Ale 76
4 American Blonde Ale 70
5 American Double / Imperial IPA 62
6 American Pale Wheat Ale 59
7 American Brown Ale 49
8 American Porter 49
9 Fruit / Vegetable Beer 36
10 Witbier 31
... with 82 more rows

16

Exercise

Filter the dataset flights from the nycflights13 package to
only show flights with planes that have flown at least 100 flights.

17

Solution i

library(nycflights13)

planes100 <- flights %>%
count(tailnum) %>%
filter(n >= 100)

flights100 <- semi_join(flights,
planes100)

18

Solution ii

Do we get flights with missing
tail number?
flights100 %>%

filter(is.na(tailnum)) %>%
nrow

[1] 2512

19

Solution iii

We can remove these NAs from planes100
planes100 <- filter(planes100,

!is.na(tailnum))
Or we can remove them from flights100
flights100 <- filter(flights100,

!is.na(tailnum))

20

Some tips about joins

• You can join using more than one variable:

inner_join(x, y, by = c(”var1”, ”var2”))

• You can join even when the same variable is named
differently:

inner_join(x, y, by = c(”name1” = ”name2”))

21

Set operations i

• Here, the setup is slightly different.
• We still have two data.frames x and y.
• But we assume they have exactly the same variables.

• We want to create a new dataset z that will also have the
same variables as x and y.

• There are three different set operations:
• Union: z has the unique observations from x and y.
• Intersection: z has the observations common between x and
y.

• Set difference: z has the observations from x that are not in y.

22

Set operations ii

library(tidyverse)
df1 <- tibble(
x = c(1, 2),
y = c(1, 1)

)
df2 <- tibble(
x = c(1, 1),
y = c(1, 2)

)

23

Set operations iii

Note that we get 3 rows, not 4
because of duplicates
union(df1, df2)

A tibble: 3 x 2
x y
<dbl> <dbl>
1 1 1
2 2 1
3 1 2

24

Set operations iv

intersect(df1, df2)

A tibble: 1 x 2
x y
<dbl> <dbl>
1 1 1

25

Set operations v

setdiff(df1, df2)

A tibble: 1 x 2
x y
<dbl> <dbl>
1 2 1

26

Set operations vi

The order is important!
setdiff(df2, df1)

A tibble: 1 x 2
x y
<dbl> <dbl>
1 1 2

27

Exercise

Find the states with at least 30 breweries. Create a dataset that
contains information about beers from these states. Using linear
regression, investigate whether there is a significant difference
between the average ABV for beers from these states.

28

Solution i

• There are several ways of doing this, but a key observation is
that we need the variable state to appear in the final
dataset, otherwise we can’t use it as a covariate.

• This suggests that the final dataset should be created using a
mutating join.

• Given that we only want beers from some states, we also want
to choose an inner join.

• Finally, the inner join should be between df_beers and the
subset of df_breweries corresponding to these top states.

29

Solution ii

One solution: group by state
and use n() inside filter
breweries_30 <- df_breweries %>%

group_by(state) %>%
filter(n() >= 30) # n() counts per group

dataset <- inner_join(df_beers,
breweries_30,
by = ”brewery_id”)

30

Solution iii

count(dataset, state, sort = TRUE)

A tibble: 3 x 2
state n
<chr> <int>
1 CO 265
2 CA 183
3 MI 162

31

Solution iv

fit <- lm(abv ~ state, data = dataset)
fit

##
Call:
lm(formula = abv ~ state, data = dataset)
##
Coefficients:
(Intercept) stateCO stateMI
0.061082 0.002290 0.002295

32

Solution v

confint(fit)

2.5 % 97.5 %
(Intercept) 0.0589595040 0.063205331
stateCO -0.0005010600 0.005080225
stateMI -0.0008575131 0.005447645

33

Solution vi

Alternatively, we can use a semijoin
to create breweries_30
breweries_top <- df_breweries %>%

count(state) %>%
filter(n >= 30)

breweries_30 <- semi_join(df_breweries,
breweries_top)

34

