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Lecture Objectives

• Fit linear regression models using R.
• Understand the output.
• Compare and contrast with t-tests and ANOVA.
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Motivation

• We talked about summary statistics and how to compute
them for different subgroups.

• Even though we can compute confidence intervals for sample
means, we don’t really have a good way to make comparisons.

• That’s what statistical tests are for!
• In SCI 2000, we will focus on linear regression.

• More general than t-tests and ANOVA.
• Very flexible.
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General notation

• Linear regression estimates the relationship between a single
variable Y , called the outcome variable, and a series of
variables X1, . . . , Xp, called covariates.

• Machine learning uses target and features, respectively.

• The outcome Y is typically a continuous variable.
• Eg. Height, income, blood pressure, etc.

• The covariates X1, . . . , Xp can be anything.
• We want to collect all variables Y, X1, . . . , Xp on the same
unit of observation (e.g. person, school, animal, olive oil).
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Simplest linear regression

• The simplest linear regression only has an outcome variable
Y , no covariates.

• It’s equivalent to a one-sample t-test.

• The linear regression equation can be written as

E(Y ) = β0.

• In other words, we are saying the population mean of Y (i.e.
E(Y )) is equal to a parameter β0.

• This notation is a bit overkill, but it will make more sense
soon…
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Example i

library(tidyverse)

dataset <- read_csv(”heart.csv”)

# Use function lm
fit <- lm(age ~ 1, data = dataset)
fit
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Example ii

##
## Call:
## lm(formula = age ~ 1, data = dataset)
##
## Coefficients:
## (Intercept)
## 54.37
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Example iii

# This is what we ran last lecture
n <- nrow(dataset)
dataset %>%

summarise(avg_age = mean(age),
sd_age = sd(age)) %>%

mutate(lo_bd = avg_age - 1.96*sd_age/sqrt(n),
up_bd = avg_age + 1.96*sd_age/sqrt(n))

## # A tibble: 1 x 4
## avg_age sd_age lo_bd up_bd
## <dbl> <dbl> <dbl> <dbl>
## 1 54.4 9.08 53.3 55.4
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Example iv

# To compute confidence interval
# use confint
confint(fit)

## 2.5 % 97.5 %
## (Intercept) 53.3396 55.39307
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One binary covariate i

• The next simplest linear regression has a single covariate X

which can take only two values: 0 or 1.
• The idea is that it encodes a binary variable.

• Eg. Male: 1; Female 0. CS Major: 1; Non-CS Major: 0.

• The linear regression equation for this situation can be
written as

E(Y |X) = β0 + β1X.

• Let’s unpack this:
• When X = 0, the RHS simplifies to β0, and we get

E(Y |X = 0) = β0.
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One binary covariate ii

• When X = 1, we get

E(Y |X = 1) = β0 + β1.

• In other words, β0 represents the population mean of Y when
X = 0, but β1 represents the difference in population means
between the two subgroups.

• If β1 is significantly different from 0, then we have evidence of
a difference in means between the two groups!
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Example i

fit <- lm(age ~ sex, data = dataset)
fit

##
## Call:
## lm(formula = age ~ sex, data = dataset)
##
## Coefficients:
## (Intercept) sex
## 55.677 -1.919
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Example ii

confint(fit)

## 2.5 % 97.5 %
## (Intercept) 53.858832 57.4953350
## sex -4.118464 0.2812059

# What if we change the coding 0/1 to female/male?
dataset <- dataset %>%

mutate(sex = if_else(sex == 1, ”male”, ”female”))
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Example iii

fit <- lm(age ~ sex, data = dataset)
fit

##
## Call:
## lm(formula = age ~ sex, data = dataset)
##
## Coefficients:
## (Intercept) sexmale
## 55.677 -1.919
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Summary so far

• We saw how linear regression connects the average value of
an outcome variable with covariates.

• Important: the regression coefficient β1 measures a
difference in means.

• With a single binary covariate, we recover the two-sample
t-test.
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Exercise

Using the heart dataset, determine whether average cholesterol
levels are different between men and women.
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Solution i

fit <- lm(chol ~ sex, data = dataset)
confint(fit)

## 2.5 % 97.5 %
## (Intercept) 251.08108 271.52308
## sexmale -34.37824 -9.64622
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One continuous covariate i

• Next we look at the case of a single continuous covariate X

• The linear regression equation for this situation can also be
written as

E(Y |X) = β0 + β1X.

• Let’s unpack this:
• When X = 0, the RHS still simplifies to β0, and we get

E(Y |X = 0) = β0.

• Let’s compare two values of X that differ by 1 unit, e.g. x and
x + 1. We have
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One continuous covariate ii

E(Y |X = x) = β0 + β1x

E(Y |X = x + 1) = β0 + β1(x + 1)
= (β0 + β1x) + β1

= E(Y |X = x) + β1.

- Rearranging, we get

β1 = E(Y |X = x + 1) − E(Y |X = x).
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One continuous covariate iii

• In other words, β1 represents the difference in population
means between two subgroups that differ by 1 unit in their
value of the covariate X .

• β0 still represents the population mean of Y when X = 0.
• But depending on what X represent (e.g. age, cholesterol),

X = 0 may not be possible!
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Example i

fit <- lm(age ~ chol, data = dataset)
fit

##
## Call:
## lm(formula = age ~ chol, data = dataset)
##
## Coefficients:
## (Intercept) chol
## 45.14573 0.03744
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Example ii

confint(fit)

## 2.5 % 97.5 %
## (Intercept) 40.25979148 50.03166732
## chol 0.01802571 0.05685821

• Interpretation: the estimated value of β1 is 0.04, which means
that two groups of people from the study who differ in their
cholesterol levels by 1 unit on average differ in their age by
0.04 year (i.e. about two weeks), with a higher cholesterol level
being associated with being older.
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Exercise

It is perhaps more natural to think of the difference in cholesterol
levels for groups of different ages. Using the heart dataset,
determine the average difference in cholesterol levels for people in
the study whose age differ by one year.
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Solution i

fit <- lm(chol ~ age, data = dataset)
fit

##
## Call:
## lm(formula = chol ~ age, data = dataset)
##
## Coefficients:
## (Intercept) age
## 179.967 1.219
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Solution ii

confint(fit)

## 2.5 % 97.5 %
## (Intercept) 145.1132605 214.821681
## age 0.5870764 1.851806

• Interpretation: the estimated value of β1 is 1.22, which means
that two groups of people from the study who differ in their
age by 1 year on average differ in their cholesterol levels by
1.22 mg/dl, with being older being associated with higher
cholesterol level.
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Inspecting the model fit i

• We can use a scatter plot to investigate the model fit,
i.e. whether the regression equation is a good description of
the data.

• But only really helpful when both Y and the single covariate
X are continuous.

fit <- lm(chol ~ age, data = dataset)
# Extract coefficient estimates with coef
coef(fit)
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Inspecting the model fit ii

## (Intercept) age
## 179.967471 1.219441

ggplot(dataset, aes(x = age, y = chol)) +
geom_point() +
geom_abline(intercept = coef(fit)[1],

slope = coef(fit)[2])
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Inspecting the model fit iii
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Categorical covariate i

• Now, let’s assume we measured a continuous outcome
variable Y across different subgroups.

• For simplicity, we’ll assume only three subgroups, but this can
easily be generalized.

• Let Z keep track of which subgroup an observation is from.
• Eg. Z = 1 for CS major, Z = 2 for Psych Major, and Z = 0 for
non-CS, non-Psych major.

• We want to compare the average value of Y between all
subgroups.

• How can we fit this into linear regression?
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Categorical covariate ii

• Solution: we introduce dummy variables X1 and X2.
• X1 = 1 if Z = 1, and X1 = 0 otherwise.
• X2 = 1 if Z = 2, and X2 = 0 otherwise.

Z X1 X2

0 0 0
1 1 0
2 0 1
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Categorical covariate iii

• The linear regression equation for this situation can then be
written as

E(Y |X) = β0 + β1X1 + β2X2.

• Let’s unpack this:
• When Z = 0, both X1 = 0 and X2 = 0, and so the RHS
simplifies to β0:

E(Y |Z = 0) = β0.

• When Z = 1, we have X1 = 1 and X2 = 0, and so the RHS
simplifies to β0 + β1:

E(Y |Z = 1) = β0 + β1.
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Categorical covariate iv

• When Z = 2, we have X1 = 0 and X2 = 1, and so the RHS
simplifies to β0 + β2:

E(Y |Z = 2) = β0 + β2.

• In other words, β1 represents the difference in population
means between the two subgroups Z = 0 and Z = 1, and β2

represents the difference between the two subgroups Z = 0
and Z = 2

• β0 still represents the population mean of Y when Z = 0.
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Example i

library(tidyverse)
library(dslabs)

count(olive, region)

## region n
## 1 Northern Italy 151
## 2 Sardinia 98
## 3 Southern Italy 323
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Example ii

fit <- lm(oleic ~ region, data = olive)
fit

##
## Call:
## lm(formula = oleic ~ region, data = olive)
##
## Coefficients:
## (Intercept) regionSardinia regionSouthern Italy
## 77.93 -5.25 -6.93
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Example iii

confint(fit)

## 2.5 % 97.5 %
## (Intercept) 77.484107 78.37695
## regionSardinia -5.961921 -4.53873
## regionSouthern Italy -7.471234 -6.38964
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Example iv

Interpretation

• The average level of oleic acid for olive oils in Northern Italy
(i.e. the reference category) is β0 = 77.9.

• The average level of oleic acid for olive oils in Sardinia is
β0 + β1 = 72.7.

• The average level of oleic acid for olive oils in Southern Italy is
β0 + β2 = 71.

• The average level of oleic acid is highest in Northern Italy, and
it’s significantly different from that of other regions.

• But these confidence intervals can’t tell us whether the
average levels are different between Sardinia and Southern
Italy.
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Summary

• We introduced linear regression as a general framework for
comparing means between subgroups.

• We saw how one-sample and two-sample t-tests are special
cases.

• By introducing dummy variables, we can also get ANOVA as a
special case.

• Next lecture: we will discuss the assumptions behind linear
regression.
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